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ABSTRACT 

 Recent advances in the design of microwave solid-state integrated circuits have attracted well-deserved research 

attention especially the microstrip lines technology. The wide applicable areas of microstrip line have made a modest 

demand for a more holistic and novel approach in its analysis. In this work, a high grade microstrip line consisting of a 

track of alumina as an insulating substrate is analysed with the deployment of Markov chain Monte Carlo. Also, we 

obtained the values of capacitances with and without dielectric substrate, characteristic impedance, and potential 

distribution along the air-dielectric interface as well as that along the line of symmetry. The results compared with those 

obtainable from analytical and finite element methods using the same parameters are found to be close. 

 

Keywords: Shielded microstrip lines, capacitance per unit length, Markov chain, characteristic impedance, Computation, 

Modelling and simulation. 

_________________________________________________________________________________________________ 

 

1.  INTRODUCTION   

 

The spiralling applications of microwave solid-state integrated circuits in recent years have attracted well-deserved research attention 

especially the microstrip lines technology. The microstrip lines technology has received considerable endorsement as suitable 

transmission lines for the design of microwave integrated circuits for high frequency applications [1]. The microstrip lines minimize 

“cross-talk” which is considered a serious concern at high frequency and high component density. This unique advantage that they 

possess has further strengthened the case in their favor for a more holistic and novel approach in their analysis. They find application 

areas in circuit components such as filters, couplers, resonators and antennas and other sensitive communication systems such as high-

speed digital applications, power radars and satellite communications. Critical to the microstrip technology are capacitances and 

characteristic impedance. The growing complexity of designs and shapes are lending intricacies into the analytical methods for 

calculating capacitances and characteristic impedance of shielded microstrip transmission lines. Hence, there is a need to explore a 

simple and novel approach. There have been many impressive research efforts by a number of authors to analyze microstrip lines for 

capacitance and characteristic impedance using diverse approaches. The finite element method [2, 3], variational method [4], 

equivalent electrode [5], conformal method [6], spectral analysis [7], and a host of others have all been used till date. Fusco et al [8] 

and Shadare et al [9] have applied Markov chain for static field analysis and microstrip line analysis respectively. The drive to 

investigate a novel approach for the analysis of microstrip lines other than those already widely reported in the literature is the 

motivation for this work. 

  

2. ABSORBING MARKON CHAIN   

 

Classical Monte Carlo methods (such as the fixed random walk, the floating  random walk, and the Exodus method) can only be used 

to calculate the potential at one point at a time.  This limitation is overcome by the Monte Carlo Markov chain which is capable of 

whole field computation [10]. 

    Suppose that the Monte Carlo Markov chain is to be applied in solving Laplace’s equation 

      0
2

 V     in region R                  (1) 

subject to the Dirichlet boundary condition 

      pVV   on boundary B                 (2) 
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A mesh is formed by dividing the region R using suitable step-size. Equation (1) is replaced by its finite difference equivalent as 

follows: 
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where   
4

1
 ypypxpxp                               (4) 

A Markov chain is defined as a sequence of random variables 
     

,,...,
1

,
0 n

XXX where the probability distribution of 
 n

X  is 

determined by the probability distribution 
 1n

X [10, 11]. A Markov Chain is a process evolving in time that remembers only the 

most recent past and whose conditional probability distributions are time invariant. It is random and memoryless. The Markov chains 

of interest to us are discrete-state, discrete-time Markov chains. The transition probability 
ijP  is the probability that a random-walking 

particle at node i moves to node j . It is expressed by the Markov property 

    
   0 1| , , ..., | ,1 1

, , 0,1, 2, ...

P P x j i x x x P x j i xn nij n n

i j X n
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    (5) 

The Markov chain is characterized by its transition probability P, defined by 
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P is a stochastic matrix, meaning that the sum of the elements in each row is unity, that is, 

1,ij

j X

P i X


                                 (7) 

In our case, the Markov chain is assumed to be the random walk, and the states are the grid nodes. If we assume that there are 
fn free 

(or non-absorbing) nodes and 
pn fixed (absorbing) nodes, the size of the transition matrix P is n, where 

                  
pf nnn                              (8) 

If the absorbing nodes are numbered first and the non-absorbing states are numbered last, the nn   transition matrix becomes 

            

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QR
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P                              (9) 

where the 
pf nn  matrix R represents the probabilities of moving from non-absorbing nodes to absorbing ones; the 

pf nn  matrix 

Q represents the probabilities of moving from one non-absorbing node to another; I is the identity matrix representing transitions 

between the absorbing nodes  ;01  ijii PandP  and 0 is the null matrix showing that there are no transitions from absorbing to 

non-absorbing nodes. From equation (4) 
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The same applies to 
ijR except that j is an absorbing node. For any absorbing Markov chain, QI   has an inverse. This is usually 

referred to as the fundamental matrix 
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where 
ijN is the average number of times the random-walking particle starting from node i passes through node j  before being 

absorbed. The absorption probability matrix B is 

       RNB                    (12) 

 

 where 
ijR is the probability that a random-walking particle originating from a non-absorbing node i will end up at the absorbing node 

j. B is an 
pf nn   matrix and is stochastic, similar to the transition probability matrix, that is 

       



pn

j

fij niB
1

,...,2,1,1                                            (13) 

If 
fV and 

pV contain potentials at the free and fixed nodes respectively, then 

       
pf BVV                   (14) 

 

3. PROBLEM FORMULATION 

 

The microstrip line was divided into equal halves to take advantage of symmetry and only one half was analysed. The half-sized 

microstrip line (Fig. 1) was first analysed without the dielectric substrate and the procedure repeated for the case with the dielectric 

substrate. For the two cases, an artificial shielded height was introduced such that a finite domain was formed. The domain was then 

discretized into a number of grids (free and fixed nodes) using carefully selected step-size. The grid nodes are generated using the 

parameters shown in Table 1. Matrices are then developed from the grid based on probability and interactions of the random walking 

particles within the free nodes and between the free nodes and the absorbing nodes.  
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Figure. 1   Half sized microstrip structure 

 

Table 1 shows the detailed parameters of the microstrip line that are used for our simulations with their explicit pictorial 

representation shown in Figure 1. 

Table 1:  Parameters of microstrip line 

 

Parameter 

 

Value 

h 1.0cm 

W 1.6cm 

dV  100V 

H 5h 

Size of dielectric 5W 

Dielectric constant for 

alumina 

9.6 

Step size ( ) 0.1 and 

0.2cm 
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Case 1:  Microstrip without the dielectric in place 

 

A matrix is generated for Q that represents the probabilities of moving from one non-absorbing node to another. The transient 

probabilities are determined using equation (4) and on the line of symmetry, the condition 0




n

V
 is imposed. The finite difference 

equivalent for line of symmetry is given by: 

4310 VypVypVxpV                               (15) 

where ,
2

1
xp

4

1
 ypyp                               (16) 

The probabilities of the particles lying on the line of symmetry are determined using equation (16).  

 

Case 2: Microstrip with the dielectric in place 

 

Similarly, a matrix Q that represents the probabilities of moving from one non-absorbing node to another is generated for this case. 

The boundary condition nDnD 21   is imposed. Consider the finite difference equivalent of the boundary condition at the interface 

given as: 

4321 VypVypVxpVxpoV                (17) where the transient probabilities are given by: 
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where in our case, 1 = dielectric constant of air and          

2 =dielectric constant of alumina. So, the probabilities and interactions of the random walking particles within the free nodes are 

determined as in case 1 except that particles beginning at the interface and moving to any immediate nodes have their probabilities 

determined by equation (18).   

4.  EVALUATION OF CHARACTERISTIC IMPEDANCE 

(a).  Evaluate the values of potential at free nodes as in Equation (14) for the case without the dielectric substrate 

(b). Determine the value of the resultant charge, q [12] from Equation (21) and Figure 2. 

 
 






 KLN   rectangle   internalon   i  nodesfor   

GHJMP   rectangle  externalon   i  nodesfor  

irio

irio

V

Vq



       (19)                        

Note: corners such as J are not counted and corners such as L are counted twice 

 

 (c). Then, evaluate the capacitance oC without the dielectric in place 

dV

oq

oC
4

 , where oq is the resultant charge when the 

dielectric is not in place and dV is the potential on the conductor 

(d). Repeat steps (a) and (b) (with the dielectric substrate in place) and evaluate 

dV

q
C

4
 , where q is the resultant charge with the 

dielectric in place and dV is the potential on the conductor 

(e). Finally, calculate 

oCCu
oZ

1
 , where 

8103u m/s 
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Figure 2.  Rectangular shield around the strip conductor

 5. RESULTS AND DISCUSSION 

 
After we carried out our analysis, we obtained the following results. We compared our result with those obtained using analytical 

method and Finite Element Method as detailed in the Table 2. In the table, some results are not shown as they are not a requirement 

for obtaining the characteristic impedance through the analytical method 

 

                                                         Table 2: Analytical result versus Simulation result 

 

 
Analytical 

Result 

Finite element 

method 

Markov chain 

Step size ( 0.2 ) 

Markov chain 

Step size ( 0.1 ) 

Capacitance without 

dielectric(F/m) 
- 1110543.3   

11101486.4   
11107473.3   

Capacitance with dielectric (F/m) - 10102462.2   
10104448.2   

10104780.2   

Characteristic Impedance(ohms) 77.38  3653.37  0985.33  5916.34  

 

 

Table 2 shows the analytical result and the finite element method compared with the simulation results. The capacitance per unit 

length without the dielectric substrate is as expected less than the capacitance per unit length with the dielectric substrate. The 

characteristic impedance obtained in the simulation shows close agreement with that obtained from analytical and finite element 

methods as the step-size is further reduced. 

 

 
Figure 3.    Potential distribution along the air-dielectric interface for the half-sized microstrip line 

 

The Figure 3 shows the potential distribution along the air-dielectric interface for the half-sized microstrip line. From Figure 3, it is 

obvious that the electric potential along the dielectric interface decreases exponentially. It is zero at the point where the interface 

coincides with an absorbing node. 
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Figure. 4 Potential distribution along the line of symmetry for the half-sized microstrip line 

 

The Figure 4 shows potential distribution along the line of symmetry for the microstrip line case with and without the dielectric 

substrate. The graph is peaked at the nodes where the strip conductor exists. 

 

 

 6. CONCLUSION  

This research work analyzes microstrip lines using Markov Chain Monte Carlo method. The characteristic impedance value for the 

parameters of the microstrip line was obtained and compared closely with that obtained from analytical and finite element methods. 

Plots for the potential distribution along the dielectric-air interface and that along the line of symmetry were also obtained. It is hoped 

that this work will ease some identified and conceivable challenges that are associated with other methods previously deployed to the 

analysis of microstrip lines. 
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