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Abstract 

 

Finite element method (FEM) is utilized to obtain numerical solution of the governing differential equations. Buckling 

analysis of rectangular laminated plates with rectangular cross – section for various combinations of boundary 

conditions and aspect ratios is studied. To verify the accuracy of the present technique, buckling loads are evaluated 

and validated with other worksavailable in the literature. The good agreement with other available data demonstrates 

the reliability of finite element method used.New numerical results are generated for uniaxial and biaxial compression 

loading of symmetrically laminated composite plates; they are focused on the significant effects of buckling for 

various parameters such as boundary condition, aspect ratio and modular ratio. It was found that the effect of 

boundary conditions on buckling load increases as the aspect ratio increases for both uniaxial and biaxial 

compression loading.It was also found that, the variation of buckling load with aspect ratio becomes almost constant 

for higher values of elastic modulus ratio. 

Keywords: Finite element method, classical plate theory, buckling, thin plates, laminated composites. 

 

1. INTRODUCTION 

 

Composite materials are widely used in a broad spectrum of modern engineering application fields ranging from 

traditional fields such as automobiles, robotics, day to day appliances etc. to highly sophisticated applications such as 

space industries. This is due to their excellent high strength to weight ratio, high stiffness, and the controllability of the 
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structural properties with the variation of fiber orientation, stacking scheme and the number of laminates. Among the 

various aspects of the structural performance of structures made of composite materials is the mechanical behavior of 

rectangular laminated plates which has drawn much attention. In particular, consideration of the buckling phenomena 

in such plates is essential for the efficient and reliable design and for the safe use of the structural element. Due to the 

anisotropic and coupled material behavior, the analysis of composite laminated plates is generally more complicated 

than the analysis of homogeneous isotropic ones. 

The members and structures composed of laminated composite material are usually very thin, and hence more prone 

to buckling. Buckling phenomenon is critically dangerous to structural components because it leads to failure at 

relatively low stress. General introductions to the buckling of elastic structures and of laminated plates can be found in 

e.g. Refs. {[1] – [14]}. However, these available data are restricted to idealized loading, namely, uniaxial or biaxial 

uniform compression. 

Due to the importance of buckling considerations, there are an overwhelming number of investigations available in 

which corresponding stability problems are considered by a wide variety of methods which may be of a closed – form 

analytical nature or may be sorted into the class of semi – analytical or purely numerical analysis method. 

Closed – form exact solutions for the buckling problem of rectangular composite plates are available only for limited 

combinations of boundary conditions and lamination schemes. These include cross – ply symmetric and angle – ply 

anti – symmetric rectangular laminates with at least two opposite edges simply supported, and similar plates with two 

opposite edges clamped but free to deflect (i.e. guided clamp) or with one edge simply supported and the opposite 

edge with a guided clamp. Most of the exact solutions discussed in the monographs of Whitney [15] who developed 

an exact solution for critical buckling of solid rectangular orthotropic plates with all edges simply supported, and of 

Reddy {[16] – [19]} and Leissa and Kang [20], and that of Refs. [7] and [21]. Bao et al. [22] developed an exact 

solution for two edges simply supported and two edges clamped, and Robinson [23] who developed an exact solution 

for the critical buckling stress of an orthotropic sandwich plate with all edges simply supported. 

For all other configurations, for which only approximated results are available, several semi – analytical and 

numerical techniques have been developed. The Rayleigh – Ritz method [21] and [24], the finite strip method (FSM) 

[4] and [25], the element free Galerkin method (EFG) [26], the differential quadrature technique [27], the moving least 

square differential quadrature method [28] and the most extensively used finite element method (FEM) [29] are the 

most common ones. 

Many authors have used finite element method to predict accurate in – plane stress distribution which is then used to 

solve the buckling problem. Zienkiewicz [30] and Cook [31] have clearly presented an approach for finding the 

buckling strength of plates by first solving the linear elastic problem for a reference load and then the eigenvalue 

problem for the smallest eigenvalue which when multiplied by the reference load gives the critical buckling load of 

the structure. An excellent review of the development of plate finite elements during the past 35 years was presented 

by Yang et al. [32]. 

Many buckling analysis of composite plates available in literature are usually realized parallel with the vibration 

analyses, and are based on two – dimensional plate theories which may be classified as classical and shear deformable 

ones. Classical plate theories (CPT) are based on Kirchhoff's hypothesis which assumes that normal to the mid – 
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surface of the plate before deformation remain straight and normal to the mid – surface after deformation. These 

theories are widely used for the analysis of thin plates. The only limitation of this theory is that, it is not adequate for 

the buckling analysis of moderately thick and thick laminates. However, it gives reasonably accurate results for many 

engineering problems in bending, buckling and vibration of isotropic, orthotropic and laminated composite plates. 

Shear deformable plate theories are usually based on a displacement field assumption. Taking these functions as linear 

square and cubic forms leads to the so – called uniform or Mindlin shear deformable plate theory (USDPT) [33], and 

parabolic shear deformable plate theories (PSDPT) [34] respectively. Different forms were also employed such as 

hyperbolic shear deformable plate theory (HSDPT) [35], and trigonometric or sine functions shear deformable plate 

theory (TSDPT) [36]. Since these types of shear deformation theories do not satisfy the continuity conditions among 

many layers of the composite structures, the zig – zag or the corrugated type of the plate theories introduced by Di 

Sciuva [37], and Cho and Parmeter [38] in order to consider interlaminar stress continuities. Recently, Karama et al. 

[39] proposed a new exponential function {i.e. exponential shear deformable plate theory (ESDPT)} in the 

displacement field of the composite laminated structures for the representation of the shear stress distribution along 

the thickness of the composite structures and compared their result for static and dynamic problem of the composite 

beams with the sine model. 

The theory used in the present work comes under the class of displacement-based theories. Extensions of these 

theories which include the linear terms in z in u and v and only the constant term in w, to account for higher – order 

variations and to laminated plates, can be found in the work of Yang, Norris and Stavsky [40], Whitney and Pagano 

[41] and Phan and Reddy [42]. In the present work, classical plate theory is used, which is appropriate for thin 

laminated plates.  

In the present study, the composite media are assumed free of imperfections i.e. initial geometrical imperfections due 

to initial distortion of the structure, and material and / or constructional imperfections such as broken fibers, 

delaminated regions, cracks in the matrix material, foreign inclusions and small voids which are due to inconvenient 

selection of fibers / matrix materials and manufacturing defects. Therefore, the fibers and matrix are assumed perfectly 

bonded. 

 

2. MATHEMATICAL FORMULATION 

 

Consider a thin plate of length a, breadth b, and thickness h as shown in Figure 2.1a, subjected to in – plane loads    , 

   and      as shown in Figure 2.1b. The in – plane displacements         and         , can be expressed in terms 

of the out – of – plane displacement        as shown below. 
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( a )                                                                                                         ( b )   

Figure 2.1 

 

 

Figure 2.2 Geometry of an n-Layered laminate 

 

The plate shown in figure 2.1a is constructed of an arbitrary number of orthotropic layers bonded together as in figure 

2.2 above. 

The strain – displacement relations according to the large deformation theory are: 
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These can be written as: 

         

Where,   [       ]
 
 and      and      represent the linear and non – linear parts of the strain, i.e. 
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The virtual linear strains can be written as: 
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The virtual linear strains energy 
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Where  denotes volume 

The stress – strain relations,  

       

Where    are the material properties. 

  [
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Where     are given in Appendix (A). 

Substitute for  in equation (5). 

    ∫    
     

   
 

                          

Now express   in terms of the shape functions N (given in Appendix (B)) and nodal displacements   , equation (2) 

can be written as: 

                

Where, 
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Hence equation (6) can be written in the form,  

     ∫                
 

          

or 
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Where, 
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Hence, the virtual strain energy,  

           
                  

Where      is the element stiffness matrix, 

                  ∫                           

Now equation (3) can be written in the form, 
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Where, 

[           ]  ∫ [           ]
   

    

   

And    ,    , and      are the in – plane stresses. 

The previous equation can be written as: 
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Introducing the shape functions and nodal displacements, we get: 
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   is the element differential matrix. 

Now, 

            

                                                                                   
           

   
       

Now since        
  is arbitrary and cannot be equal to zero, it follows that, 
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When the plate is divided into a number of elements, the global equation is: 

[     
 ]                    

Where, 

  ∑          ∑       ∑   

Since,        then the determinant, 

|     
 |                       

Hence, the buckling loads    and the buckling modes can be evaluated. 

The elements of the stiffness matrix are obtained from equation (8) which can be expanded as follows: 

   
  ∫*

    

    

    

    
    

    

     
+ [

         

         

         

]

[
 
 
 
 
 
 
    

   

    

   

 
    

    ]
 
 
 
 
 
 

      

                                               
  ∫*   

    

   

    

   
    (

    

   

    

   
 

    

   

    

   ) 

    

    

   

    

   
     

    

     

    

     
     (

    

     

    

   
 

    

   

    

     
) 

file:///E:/ijerat-17/www.ijerat.com
file:///E:/ijerat-17/www.ijerat.com
file:///E:/ijerat-17/www.ijerat.com


Mahmoud Yassin Osman  et al., Buckling Analysis of Thin Laminated Composite Plate using FEM ... 

 

8 
www.ijerat.com 

     (
    

     

    

   
 

    

   

    

     
)+               

 

The elements of the differential matrix are obtained from equation (10) which when expanded becomes: 
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The integrals in equations (13) and (14) are given in Appendix (C). We use a 4 – noded element as shown in Figure 

(2.2) below. 

 

Figure 2.2 

The shape functions for the 4 – noded element expressed in global coordinates     .  we take: 

                                

                                  

                   
   

   
                      

   

   
 

The shape functions in local coordinates         are as follows: 
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The coefficients                 are given in Appendix (B). 

In the analysis, the following nondimensional quantities are used: 
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Where,     is the modulus in direction of the fiber. 

 

3. BOUNDARY CONDITIONS 
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All of the analyses described in the present paper have been undertaken assuming the plate to be subjected to 

identical and/ or different support conditions on the four edges of the plate. The five sets of the edge conditions used 

here are designated as clamped – clamped (CC), simply – simply supported (SS), clamped – simply supported (CS), 

clamped – free (CF) and simply supported – free (SF) are shown in table 3.1 below. 

 

Table 3.1 Boundary conditions 

Boundary 

Conditions 

at 

         

at 

         

CC                 

SS             

CS               

CF         – 

SF       – 

 

4. VERIFICATION OF THE FINITE ELEMENT (FE) PROGRAM 

 

Table 4.1 below shows the effect of stacking sequence, plate aspect ratio, and modulus ratio on nondimensionalcritical 

loads ̅              of rectangular laminates under uniaxial as well as biaxial compression. The following 

material properties were used:         and                         . It is observed that the 

nondimensional buckling load increases for symmetric laminates as the modular ratio increases. The present results 

are compared with Reddy [43]. The verification process showed good agreement especially as the aspect ratio 

increases. 

Table 4.1 Buckling load for 0/90/90/0 simply supported (SS) plate for different aspect and moduli ratios 

Aspect Ratio 

a/b 

Modular Ratio Uniaxial Compression Biaxial Compression 

      10 25 10 25 

0.5 Present  

Ref. [43] 

17.958 

18.126 

22.566 

22.874 

12.307 

12.694 

13.689 

14.248 

1.0 Present  

Ref. [43] 

6.274 

6.347 

7.003 

7.124 

3.137 

3.174 

3.502 

3.562 

1.5 Present  

Ref. [43] 

5.215 

5.277 

5.221 

5.318 

1.605 

1.624 

1.606 

1.636 

 

Table 4.2 contains nondimensional buckling loads   ̅         
   of antisymmetric angle – ply laminates under 

uniaxial and biaxial in – plane compressive loads. The material properties used for atypical lamina are: 
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It is observed from table 4.2 that the prediction of the buckling loads by the present study is closer to that of Reddy 

[43]. It should be noted that coupling between extensions and bending is not considered in the present analysis. 

Coupling effect is more pronounced in antisymmetric angle – ply laminates with few layers. When the number of 

layers is large, coupling effect becomes negligible as in the case of the 8-layer laminate considered for comparison in 

the table 4.2. 

 

Table 4.2 Buckling load for           simply supported (SS) plate for different moduli and aspect ratios 

Aspect Ratio 

a/b 

Modular Ratio Uniaxial Compression Biaxial Compression 

      10 25 10 25 

0.5 Present  

Ref. [43] 

24.348 

23.746 

55.790 

53.888 

19.480 

18.999 

44.630 

43.110 

1.0 Present  

Ref. [43] 

18.124 

17.637 

42.690 

41.166 

9.062 

8.813 

21.345 

20.578 

1.5 Present  

Ref. [43] 

18.977 

18.565 

44.476 

43.091 

6.170 

6.001 

14.383 

13.877 

 

5. NEW NUMERICAL RESULTS  

 

It was decided to undertake study case and generate results of buckling loads for cross – ply symmetrically laminated 

(0/90/90/0) and (0/90/0) composite plates to be used as bench marks for other researchers. 

The buckling loads of the plates are highly influenced by several factors such as aspect ratio, the boundary conditions, 

and the modulus ratio. Large amount of data has been produced which cannot be presented in a limited space as 

provided by this publication. The results are shown in tables 5.1, 5.2, 5.3 and 5.4 below. 

Table 5.1 Buckling load for 0/90/90/0 plate with different boundary conditions and aspect ratios  

( ̅         
 )                                

(a) Uniaxial loading 

a/b CC SS CS CF SF 

0.5 2.8999 0.7355 2.8116 2.8816 0.7354 

1.0 3.3568 0.8823 2.9888 2.9860 0.8777 

1.5 5.1730 1.4268 3.3877 3.3576 1.3822 

(b) Biaxial loading 

a/b CC SS CS CF SF 

0.5 1.0827 0.4213 1.0022 0.9852 0.4207 

1.0 1.3795 0.4411 1.0741 1.0372 0.4354 

1.5 1.6367 0.4391 1.2466 1.1473 0.4372 

Table 5.2 Buckling load for 0/90/90/0 plate with different boundary conditions and aspect ratios  

( ̅         
 )                                     

file:///E:/ijerat-17/www.ijerat.com
file:///E:/ijerat-17/www.ijerat.com


 

International Journal of Engineering Research And Advanced Technology (IJERAT)             

ISSN:2454-6135                                                                 [Volume. 03 Issue.3,  March– 2017] 
www.ijerat.com 

 

11 
www.ijerat.com 

(a) Uniaxial loading 

a/b CC SS CS CF SF 

0.5 3.1453 0.8598 3.0821 3.0789 0.8556 

1.0 4.3829 1.3969 3.5498 3.4952 1.3294 

1.5 8.3429 2.9125 4.7780 4.4915 2.5354 

 

(b) Biaxial loading 

a/b CC SS CS CF SF 

0.5 1.8172 0.6877 1.6838 1.6578 0.6874 

1.0 2.2064 0.6985 1.8328 1.8125 0.5990 

1.5 2.8059 0.8962 1.7618 1.6983 0.8953 

 

Table 5.3 Buckling load for 0/90/0 plate with different boundary conditions ( ̅         
 )        

                         

(a) Uniaxial loading 

a/b CC SS CS CF SF 

0.5 2.7304 0.8011 2.6555 2.6435 0.8010 

1.0 3.3700 0.8823 3.2149 3.2142 0.8809 

1.5 4.1817 1.1421 3.4017 3.3947 1.1313 

(b) Biaxial loading 

a/b CC SS CS CF SF 

0.5 0.7529 0.3325 0.7201 0.7143 0.3319 

1.0 0.9511 0.3489 0.7932 0.7803 0.3478 

1.5 1.1763 0.3514 0.8099 0.7940 0.3472 

Table 5.4 Buckling load for 0/90/0 plate with different boundary conditions and aspect ratios ( ̅  

       
 )                               

(a) Uniaxial loading 

a/b CC SS CS CF SF 

0.5 3.3624 0.9142 3.3112 4.2781 0.9105 

1.0 4.3977 1.3969 3.7376 3.6940 1.3439 

1.5 7.7135 2.6763 4.7942 4.5828 2.4048 

(b) Biaxial loading 

a/b CC SS CS CF SF 

0.5 1.7380 0.6871 1.6337 1.5690 0.6872 
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1.0 2.1744 0.6984 1.7113 1.6820 0.6986 

1.5 2.5075 0.8235 1.7622 1.6814 0.8239 

 

In tables 5.1 and 5.2, the buckling loads for symmetrically laminated composite plates of layer orientation 0/90/90/0 

have been determined for three different aspect ratios ranging from 0.5 to 1.5 and two modulus ratios 40 and 5. It is 

observed that the buckling load increases with increasing aspect ratio for both uniaxial and biaxial compression 

loading. The buckling load is maximum for clamped – clamped (CC), clamped – simply supported (CS) and clamped 

– free (CF) boundary conditions, while minimum for simply – simply supported (SS) and simply supported – free (SF) 

boundary conditions. This means that as the plate becomes more restrained, its resistance to buckling increases. The 

reason is that the structural stiffness reduces due to its constraints. Also, the variation of buckling load with aspect 

ratio in biaxial compression becomes almost constant for higher values of elastic modulus ratio for approximately all 

boundary conditions except clamped – clamped (CC) and to some extent clamped – simply supported (CS). The 

reason behind this is that the longitudinal elastic modulus is a resistance variable and therefore an increase in its 

magnitude will improve the reliability of thenumerical  results. 

The same behavior of buckling load applies to symmetrically laminate composite plates 0/90/0 as shown in tables 5.3 

and 5.4. 

 

6. CONCLUSIONS 

 

Buckling response of symmetric cross – ply rectangular laminates under uniaxial and biaxial compression is predicted 

using finite element analysis based on classical laminate theory. The effect of boundary condition, aspect ratio and 

elastic modulus ratio on buckling load is explained. It is found that as the plate becomes more restrained its resistance 

to buckling increases. Also, the buckling load decreases as the modulus ratio increases and becomes almost constant 

for higher values of elastic modular ratio. 
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Appendix (A) 

The transformed material properties are: 
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Appendix (B) 
       

i 

   

                                                   

   2 -3 3 0 -4 0 1 0 0 -1 1 1 

   1 -1 1 -1 -1 0 1 -1 0 0 1 0 

   -1 1 -1 0 1 1 0 0 -1 1 0 -1 

   2 -3 -3 0 4 0 1 0 0 1 -1 -1 

   1 -1 -1 -1 1 0 1 1 0 0 -1 0 

   1 -1 -1 0 1 -1 0 0 1 1 0 -1 

   2 3 3 0 4 0 -1 0 0 -1 -1 -1 

   -1 -1 -1 1 -1 0 1 1 0 0 1 0 

   -1 -1 -1 0 -1 1 0 0 1 1 0 1 

    2 3 -3 0 -4 0 -1 0 0 1 1 1 

    -1 -1 1 1 1 0 1 -1 0 0 -1 0 

    1 1 -1 0 -1 -1 0 0 -1 1 0 1 

 

 

Appendix (C) 

The integrals in equations (13) and (14) are given in nondimensional form as follows (limits of integration      

  to ): 
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In the above expressions     
 

 
    

 

 
  where   and   are the dimensions of the plate in the x – and y – directions 

respectively.   and   are the number of elements in the x – and y – directions respectively. Note that    
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   where   and   are the normalized coordinates, and        
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