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Abstract 

 

In this study, finite element method is used to compute deflections of composite beams undergoing geometric 

nonlinearity. The beams analyzed are laminates with different lay – ups and different end conditions, subjected to 

uniformly distributed loads. Integrals encountered in the analysis are performed by hand, and therefore considered 

more accurate than numerical integration. The results obtained showed excellent agreement with those found in 

literature. Extra results are generated to serve as bench marks for further investigations. As expected, large 

deflections have resulted in stiffer beams. The stiffness increase is more pronounced in beams which are less 

restrained. 

Keywords: Finite element method, large deflection, laminated composite beams. 

 

1. INTRODUCTION 

 

Composite materials, or composites, are materials consisting of two or more phases. They have been used in 

engineering structures over many decades. Applications of composites are found in civil and mechanical engineering 

structures which include aircraft wings, wind turbines, robot arms, etc. Their advantages over metals include high 

strength/ weight ratio, high stiffness, high fatigue, high corrosion resistance, and lower thermal expansion. In addition 

to that the properties of composites can be tailored to meet the design requirements through selection of phase 

constituents that serve the end goal. 
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Composites are made of fiber embedded in a binding material or matrix. The fiber is the load carrying phase whereas 

the matrix protects and supports the fiber, and assists in transmitting external load to the fiber. Hence bonding between 

the fiber and the matrix is of utmost importance. In case of debonding or separation between fiber and matrix, the load 

carrying capacity of a composite structure can lower drastically. In high performance composites, the fibers are long 

or continuous, whilst they are short in low or medium performance composite. 

A simple composite structure is usually in the form of a laminate made up of a number of layers or plies stacked 

together in some preferable order or lay – up. The fiber in each ply may be oriented at some angle to the axis of the 

laminate to achieve the required overall properties. 

The ever growing use of composites has led to tremendous advancements in the analysis of laminates under external 

loads. It is well known that shear deformation is more pronounced in composites than in metals due to their low shear 

modulus to in – plane elastic modulus. This led to the evolution of a number of mathematical models which include 

the classical theory that ignores shear deformation [1], first – order shear deformation theory [2] that assumes constant 

shear deformation across the laminate's thickness, and a variety of higher – order shear deformation theories [3] that 

claim better representation of the deformed cross – sections.  

The solution of the mathematical models ranges from close – form solutions to numerical solutions. The most popular 

numerical technique is the finite element method [4]. In the vast majority of analyses, the laminate is replaced by a 

single layer [5] in which the displacement field through the entire thickness of the laminate is assumed. The equivalent 

laminate properties are then calculated and the behavior of the laminate is determined. 

There is an extensive body of literature involving linear analysis of laminates such as beams plates. However, to some 

degree little that addresses the nonlinear response, and in particular beams. There are four types of nonlinearity. First: 

material nonlinearity which is caused by nonlinear stress – strain curve as seen in plastic rubber materials. Second: 

geometric nonlinearity which is caused by significant change between the initial and final geometry or position of an 

element of the material. Third: boundary condition nonlinearity which is caused by contact between different parts that 

produces disproportionate change in deformation. Fourth: loading nonlinearity which is caused by load changing over 

time. Geometric linearity, which is the subject of this paper, is usually referred to as large deflection. In fact, large 

deflections and rotations lead to a drastic change in the behavior of a structure due to stiffness and internal loads 

changes. 

Geometric nonlinearity in laminates results from the nonlinear strain equations, where the transverse displacement is 

coupled to the axial strains. As a result, mid – plane stretching of the laminate may occur. Such stretching causes 

increase in the laminate stiffness. That is to say when the load is small and consequently the deflection, the laminate 

resists the load only with bending stiffness. After the load has caused some curvature, the deflected laminate exhibits 

membrane stiffness in addition to the original bending stiffness, and hence the laminate becomes much stiffer. Of 

course if the load is kept increasing, a stage will be reached when the structure loses its stiffness and fails to support 

the load. 

Large deflection effects should be included in any structural analysis when deformations and rotations reach 

significant values. The displacements computed on the assumption of linear or small deflection theory, will be 

overestimated since the theory neglects membrane stresses that contribute to the stiffness of the structure. 
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It should be noted that nonlinear problems do not lend themselves easily to analytical solutions. The majority of works 

in this area employ some numerical technique, and in particular the finite element method. Nonlinear analysis of 

isotropic bodies can be found in [6] and [7]. Examples of nonlinear analysis of composites can be found in Refs. [8], 

[9], and [10]. 

 

2. MATHEMATICAL FORMULATION 

 

When a laminate is experiencing large deformations due to loading it, the virtual strain energy can be stated as: 

   ∫       
 

               

Where ,  , and   denote strain, stress and volume respectively. When finite element method is employed, the virtual 

strain is: 

    ̅                           

Where ̅ is a function of the shape functions    and nodal displacements  . Hence equation (1) can be written as:  

      ∫  ̅   
 

           

The work done by forces   applied at the nodes, 

                                 

The total energy: 

        

        ∫  ̅   
 

            

We seek approximate solution to equation (5) such that the residual,  , is zero or small number. 

           ∫  ̅   
 

            

We use the Newton – Raphson method so we minimize the residual to obtain the tangent stiffness matrix   . 
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Where   is a matrix of the material properties. 
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 ̅can be split into two components: Linear part (small deformation)    , and nonlinear part (large deformation)    .  
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Hence the tangent stiffness matrix is 
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Now let us consider a beam of length   and cross – sectional area  , made up of   layers perfectly bonded together. 

The beam is supported at the ends and subjected to a uniformly distributed load   (load/ unit length) as shown in 

figure 2.1 below. 

 

 
Figure 2.1 

The beam is divided into   2 – noded elements. Figure 2.2 shows a one typical element of length      , and the 

nodal displacements      and            . 
 

 

Figure 2.2 

The deflection can be expressed in terms of the nodal displacements as: 

                                       

where, 

  
  

  
 

If we neglect the mid – plane deformation, we can write the longitudinal strain as: 

    
   

   
 

 

 
(
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The virtual strain: 
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where, 

   
   

   
                (
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Hence equations (11) – (14) become: 
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where, 
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Now to obtain    , first rewrite equation (9) in terms of     
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When equation (25) is substituted into equation (24), we get 

   
  

 
∫ (
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      ∫ (

   

   )
    

   

  

   

  
          

Up to now, the tangent stiffness matrix is known, so move on to the equation to be solved i.e. equation (5). When the 

load is uniformly distributed, and the rate of loading is  ,   in equation (5) is replaced by  ∫     
   . Hence equation 

(5) reads as follows: 

∫  ̅   
  

 ∫       
  

   

Where  from equation (25) and   ̅ from equation (18) are introduced in the equation above, and after integration is 

carried out, we get   

file:///E:/ijerat-17/www.ijerat.com


 

International Journal of Engineering Research And Advanced Technology (IJERAT)             

ISSN:2454-6135                                                                 [Volume. 03 Issue.3,  March– 2017] 
www.ijerat.com 

 

32 
www.ijerat.com 

     ∫                            

where, 

                            

whereas  

                               

The solution procedure is as follows: 

The solution is obtained using the Newton – Raphson iterative method as outlined in the following steps. 

Step (1): set load   

Step (2): obtain the linear solution,     , as a first approximation.  

Step (3): start iteration          , say.   

Step (4): establish matrix     from equation (29). 

Step (5): compute correction as follows: 

     [  ( 
 )]

  
    [  ( 

 )]
  

[   (  )  ] 

Step (6): compute the new solution. 

            

Step (7): repeat iteration (steps 4 – 6) till the required accuracy is achieved. That is to say the error is less than a 

prescribed value according to the following law: 

√
∑ (  

      
 )

  
   

∑ (  
   )

  
   

                               

Local coordinates are used in the present study. Figure 2.3 shows an element in the local coordinate ( ). The relation 

between the coordinate   and   is as follows: 

     
 

 
             

 

 
   

 

Figure 2.3 

The shape function in local coordinates is expressed as follows: 
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Where the coefficients are those given next: 

              

1 1/2 -3/4 0 1/4 

2 1/4 -1/4 -1/4 1/4 

3 1/2 3/4 0 -1/4 

4 -1/4 -1/4 1/4 1/4 

 

The deflection is expressed in terms of    

               

where, 

  
 

 
        

 

 
        

   
 

 
        

 

 
        

     
 

 
        

   
 

 
        

 

 
        

The analysis is carried using non – dimensional quantities given next 

 ̅  
 

 
   ̅  (

 

 
)      ̅  

 

   
 

 ̅  
 

   
 
   ̅  

 

   
 
   ̅  (

  

   
 )          ̅  

 

 
 

The elements of the matrices given by equations (19) – (22) and equation (26) can be found in Appendix (A). 

As mentioned somewhere else. 

        ∑ ∫            
  

    

 

   

 

     
       

         
      

       

where, 

   
  

  

        
            

  
     

        
     

      

and 

                     

   is the angle of orientation of the fiber in a certain ply; and     number of plies in a laminate: 
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    and      are the Young's Moduli of a lamina in the longitudinal and transverse directions respectively.      is the 

in – plane shear modulus. 

 

3. RESULTS AND DISCUSSION 

 

Amatlab computer program has been compiled for beams undergoing large deformations. All the results presented in 

this paper are for beams divided into ten elements. As explained earlier the Newton – Raphson method is employed in 

the analysis. It is worthwhile mentioning that convergence of solution was fast. The prescribed accuracy has been 

achieved after a few iterations. 

To verify the accuracy of the present analysis, comparison is made with Ref. [11] where a built – in isotropic beam 

under uniform distributed load is considered. The beam is 2.5m in length, and         in cross– section. The load 

varies from 0.2 to 2N/mm. The maximum non – dimensional deflections are given in Appendix (B): Table (1). It is 

evident that there is excellent agreement between the two sets of results. Therefore, we conclude that the present 

analysis is reasonably accurate in predicting the nonlinear behavior of beams in general. 

Beams with four types of end conditions are considered, and these are: built – in beam (CC), simply supported beam 

(SS), cantilever beam (CF), and finally propped cantilever beam (CS). The maximum non – dimensional deflections of 

an isotropic beam under different loads are given in Appendix (B): Table (2). The effect of stiffening due to large 

deflection can easily be noticed. The percentage error or percentage over estimation of deflection according to linear 

analysis for a non – dimensional load of 40 is given in the next table (3.1) As a matter of fact, the percentage error 

represents percentage increase in the stiffness of the beam. 

Table 3.1 Isotropic material; q=40 

 CC SS CF CS 

Nonlinear 0.7773 1.0928 2.9908 0.9282 

Linear 1.2480 5.7200 26.5000 2.5640 

Error % 60.6 423.4 786.1 176.2 

 

The increase in the stiffness of the cantilever beam (CF) is the most pronounced and stands at 786.1%, followed by the 

simply supported beam (SS) with 423.4% increase. The propped cantilever (CS) comes third with an increase of 

176.2%. The least pronounced increase of stiffness is associated with the built – in beam (CC) which is 60.6%. 

However, it should be noted that very large increase in stiffness may not happen in real life. The beam that showed the 

largest increase in stiffness may not reach that level, and it may fail at a lower load due to stresses exceeding the safe 

limits. 

The theoretical analysis as well as the computer program is set to solve beam problem irrespective of number of plies; 

orientation, or properties. However, only the results of symmetric cross – ply laminates are given. The laminates for 

which results have been generated are:         ,          , and             . The maximum non – dimensional 

deflections for these laminates for different end conditions and for a wide range of loads are given in Appendix (B): 
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Tables (3 – 5). Now assuming that the beams behave linearly when the load is unity, then we can estimate the 

deflections when q=40, and construct Tables (3.2 – 3.5) given next which show the difference between linear and 

nonlinear deflections for the different laminates and end conditions.  

 

 

Table 3.2 Built – in beam (CC); q=40 

                                 

Nonlinear 0.7766 0.8559 0.9420 1.0749 

Linear 1.2480 1.2960 1.4240 2.0960 

Error % 60.7 51.4 51.2 95.0 

 

Table 3.3 Simply supported beam (SS); q=40 

                                 

Nonlinear 1.0921 1.2386 1.3633 1.4100 

Linear 5.7120 6.0480 6.6560 8.8600 

Error % 423.0 388.3 388.2 528.4 

 

Table 3.4 Cantilever beam (CF); q=40 

                                 

Nonlinear 2.9891 3.4073 3.7502 3.8082 

Linear 26.4800 29.5360 32.5080 35.6280 

Error % 785.9 766.8 766.8 835.6 

 

Table 3.5Propped cantilever beam (CS); q=40 

                                 

Nonlinear 0.9275 1.0393 1.1438 1.2345 

Linear 2.5600 2.6680 2.9360 4.2560 

Error % 176.0 156.7 156.7 244.8 

 

The percentage error in tables (3.2 – 3.5) represents the percentage increase of the stiffness. Laminates        and 

         , with similar end conditions, differ in deflection, whereas they show equal percentage increase in 

stiffness. The effect of large deformation on the stiffness of a beam is more pronounced in the case of the eight ply 

laminate            . Figure 3.1 displays the deflection curves for a cantilever beam having three different lay – 

ups. The 90 degrees' plies seem to introduce softening effect to the laminate as one expects. 

The support is one of the main factors that has significant effect on the deflection of a beam. The more the beam is 

restrained, the higher are the membrane stresses and the stiffer in the beam. However, the percentage increase in 

stiffness tends to rise as the beam becomes less restrained. 
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Figure 3.2 shows the deflection curves of the 8 – layers laminate when the beam is built – in and simply supported. 

 
Figure 3.1 Center non – dimensional deflection for                      Figure 3.2 Center non – dimensional deflection                 

for a cantilever laminate                                                                   for built – in and simply supported laminate 

             

 

4. CONCLUSIONS 

 

1. laminated beams subjected to large deflections have been studied. The nonlinear beam theory is presented, and a 

finite element computer program is compiled. Excellent agreement was found between the present work and similar 

ones in literature. 

2. Large deflections lead to membrane stresses and consequently cause increase of the beam stiffness. 

3. Neglecting large deflection effects can lead to over estimation of the deflection. 

4. The end condition plays an important factor in the evaluation of deflection. The linear theory may overestimate the 

deflection of a built – in beam by one fold, but it may overestimate a less restrained beam such as a cantilever beam by 

eight folds. 

5. The rate of change of stiffness depends on the lamination lay – up and the type of support. The lesser a beam is 

restrained; the greater is the stiffness change. 
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APPENDICES 

 

Appendix (A) 

The elements of the different matrices are computed from the following expressions: 
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Appendix (B) 

Table (1) Mid – span deflection (mm) of a built – in isotropic beam under a uniform distributed load  

        

q Present Ref. (11)  q Present Ref. (11)  

0.2 3.0750 3.0752 1.2 14.1175 14.1140 

0.4 5.9025 5.9046 1.4 15.6300 15.6227 

0.6 8.3850 8.3892 1.6 17.0025 16.9947 

0.8 10.5450 10.5524 1.8 18.2625 18.2549 

1.0 12.4375 12.4358 2.0 19.4325 19.4220 

 

Table (2) Maximum non – dimensional deflection of isotropic beams with different end conditions 

q CC SS CF CS 

1 0.0312 0.1430 0.6625 0.0641 

8 0.2361 0.5470 1.6392 0.3837 

16 0.4218 0.7495 2.1362 0.5835 

24 0.5647 0.8893 2.4830 0.7214 

32 0.6801 0.9998 2.7583 0.8334 

40 0.7773 1.0928 2.9908 0.9282 

 

Table (3) Non – dimensional mid – span deflection of built – in beam (CC) for different lamination lay – ups 

q 0 0/90/0 0/90/90/0 (0/90/90/0)2 

1 0.312 0.0324 0.0356 0.0524 

8 0.2358 0.2481 0.2730 0.3742 
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16 0.4213 0.4517 0.4972 0.6272 

24 0.5641 0.6129 0.6745 0.8047 

32 0.6794 0.7445 0.8194 0.9540 

40 0.7766 0.8559 0.9420 1.0749 

 

Table (4) Non – dimensional mid – span deflection of a simply supported beam (SS) for different lamination  

lay – ups 

q 0 0/90/0 0/90/90/0 (0/90/90/0)2 

1 0.1428 0.1512 0.1664 0.2215 

8 0.5466 0.6115 0.6730 0.7289 

16 0.7490 0.8447 0.9297 0.9804 

24 0.8887 1.0052 1.1063 1.1550 

32 0.9992 1.1319 1.2458 1.2934 

40 1.0921 1.2386 1.3633 1.4100 

Table (5) Non – dimensional free end deflection of a cantilever beam (CF) for different lamination lay – ups 

q 0 0/90/0 0/90/90/0 (0/90/90/0)2 

1 0.6620 0.7384 0.8127 0.8907 

8 1.6382 1.8592 2.0462 2.1110 

16 2.1350 2.4287 2.6731 2.7342 

24 2.4816 2.8259 3.1103 3.1699 

32 2.7567 3.1411 3.4572 3.5163 

40 2.9891 3.4073 3.7502 3.8082 

 

Table (6) Maximum non – dimensional deflection of a propped cantilever beam (CS) for different lamination 

lay – ups 

q 0 0/90/0 0/90/90/0 (0/90/90/0)2 

1 0.0640 0.0667 0.0734 0.1064 

8 0.3833 0.4169 0.4588 0.5488 

16 0.5830 0.6457 0.7107 0.7974 

24 0.7209 0.8044 0.8853 0.9751 

32 0.8327 0.9304 1.0240 1.1160 

40 0.9275 1.0393 1.1438 1.2345 
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