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ABSTRACT 

 

In this study, the effect of the fiber orientation on the natural frequencies of free vibration of laminated composite 

beams was investigated. The problem is analyzed and solved using the energy approach which is formulated by a 

finite element model. In that model, a three-noded element with three degrees of freedom at each node is assumed. 

Numerical results were obtained for symmetric and non-symmetric laminated beams, and verified by comparisons 

with other relevant works. Also, some special cases, which related to the title, were studied and presented. The angle 

of fibers orientation,    which measured from the longitudinal axis of the beam, is varied from 
o 0 to

o 90 . It is found 

that both symmetrically and anti-symmetrically laminated beams of similar size and end conditions have equal natural 

frequencies which, generally, decrease as the angle of orientation increases.  

Keywords: Finite Element Method, First Order Shear Deformation Theory, Free Vibration, Laminated Composites, 

Natural Frequencies. 

 

1. INTRODUCTION 

 

Composite materials are those formed by combining two or more materials on a macroscopic scale such that they have 

better engineering properties than the conventional materials, for example, metals. Some of the properties that can be 

improved by forming a composite material are stiffness, strength, weight reduction, and corrosion resistance, thermal 

properties, fatigue life, and wear resistance. Most man-made composite materials are made from two materials: a 

reinforcement material called fiber and a base material, called matrix material. 

Laminar composites are those having alternating layers of material bonded together in some manner and include thin 

coatings, thicker protective surfaces, claddings, bimetallic, laminates, and sandwiches. Laminated composite beams 

are increasingly being used in many engineering applications in the fields of mechanical and civil engineering, 

transportation vehicles, marine, aviation and aerospace.  
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The papers, which are presented here as references, address the problem of the free vibration of laminated composite 

beams. A theoretical analysis of the vibration of composite beams with solid cross sections was also presented by 

Teoh and Huang [1], Chandrashekhara et al. [2], Abramovich [3]. In those analyses, the equations of motion were 

based on a Timoshenko beam model (shear deformation considered). Numerical results showed the effect of the shear 

deformation and fiber orientation on the natural frequencies. Again, Abramovich and Livshits [4] presented exact 

solutions for the free vibration of non-symmetrically laminated cross-ply composite beams. Marur and Kant [5] and 

[6], and McCarthy et al [7] applied higher order shear deformation theories to solve the problem of the free vibration 

of composite beams. 

The first-order shear deformation theory was used by Teboub and Hajela [8] to analyze the free vibration of generally 

layered composite beams. Hodges et al. [9] presented two different methods, which were simple analytical method and 

finite element method for the prediction of the natural frequencies and mode shapes of composite beams. In addition 

to the references mentioned above, references [10], [11], and [12] applied different techniques of the finite element 

method for the same problem.   

The theory used in the present paper comes under the category of displacement theories as classified by Phan and 

Reddy [13], Osman and Suleiman [14] and [15]. In this theory, which is called first order shear deformation theory 

(FSDT), the transverse planes, which are originally normal and straight to the middle plane of the beam, are assumed 

to remain straight but not necessarily normal after normal after deformation, and consequently shear correction factors 

are employed in this theory to adjust the transverse shear stress, which is constant through thickness.    

 

2. MATHEMATICAL FORMULATION 

 

Some assumptions were made in this analysis, which are: (1) All layers behave elastically; (2) Displacements are 

small compared with the beam depth; (3) Perfect bonding exists between layers; (4) The laminate is equivalent to a 

single anisotropic layer; (5) The beam is flat and has a rectangular section and vibrates in a vacuum; and (6) All kinds 

of damping are neglected. Figure 1 below shows the geometry of a beam drawn in the three dimensions X, Y, and Z or 

1, 2, and 3. 

 

 

 

 

 

 

 

 

Figure 1 The geometry of a laminated composite beam. 

The time-dependent axial and transverse displacements fields are: 
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Where, u  and w  are the axial and transverse displacements at the mid-plane, z  is the perpendicular distance from 

the mid-plane to the layer plane,   is the rotation of a plane after deformation, and t  is the time. The strain- 

displacement relations are:                               
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Where the subscripts have the same meanings as those used in 3-D elasticity formulation, i.e. 
1  is the axial or 

longitudinal strain, and 5  is the through-thickness shear strain. The stress-strain relationship of a lamina can be 

shown as: 

                                              iiji C                                                           (3) 

Where, 
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The elastic constants  11C  and  55C  for orthotropic beams can be expressed as: 
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Where; 

          1121221212135523441266 C CC  ;C ;C  ;   GGGC                                      (6) 

Applying the energy approach for the beam element shown in Figure 2, the strain energy stored is given by: 

                                        
e

T

s dVU 
2

1
                                                                     (7) 

Where, bdxdzdV   and the subscript, e, means one element. 

            

  

 

 

 

 

 

 

 

 

Figure 2 A 3-noded finite elements with nine degrees of freedom and shape functions. 
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Also, the kinetic energy is found as follows; 
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The degrees of freedom at each node are; the axial displacement u, deflection w, and rotation


, and can be written in 

terms of their nodal values as follows: 

                                  
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Where, iN  is shape function and assumed as a second-order polynomial as: 

                      
2xcxbaN iiii                         3,2,1i                                     (10) 

The constants ia , ib , and ic
 can be computed for each element from the following data: 
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Eqns. (7), and (8) leads to the final form of the non-dimensional element stiffness and inertia matrices [K]e ,and [M]e 

respectively, which are given by: 
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Where,   is the aspect ratio (length to thickness ratio), and; 
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For laminated beam with (n) layers, the constants in Eqn. (13) are: 
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The constants A, B, and D are the extensional, coupling, bending stiffnesses respectively, while the constant As is the 

shear coefficient, and Ks is the shear correction factor (taken 32  or 65 ). 

The individual element stiffness and inertia matrices [K]e and [M]e must be linked together or assembled to 

characterize the unified behavior of the entire beam. Therefore, the global stiffness and inertia matrices are given 

respectively by, 
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Where, N is the total number of beam elements. 

The beam end conditions which considered are; (1) Clamped-free beam (CF), (2) Hinged-hinged beam (HH), (3) 

Clamped-clamped beam (CC), (4) Hinged-clamped beam (HC), (5) Hinged-free beam (HF), and (6) Free-free beam 

(FF). Each beam has either movable ends or immovable ends. In the former group, the axial displacement at both 

beam-ends is considered, while neglected for the latter group.  

The solution can be obtained after the incorporation of ends conditions which will modify both stiffness and inertia 

matrices. Thus, the non-dimensional natural frequencies can be determined from the relation: 

                                                               021
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Where, I is an identity matrix, and   is the non-dimensional natural frequencies, which can be computed by 

computing the square root of the eigenvalues of the matrix    KM
1

 using a suitable computer program (Here 

MATLAB was used). 

 

3. NUMERICAL RESULTS 

 

AS/3501-6 graphite-epoxy material was used for all numerical results because of its wide applications in modern 

industries. The mechanical properties of this material are tabulated in Table (1).  

Table 1 Mechanical Properties of AS/3501-6 graphite-epoxy material 

Property Magnitude 

E1 145 GN/m2 

E2 9.6 GN/m2 

G12 4.1 GN/m2 

G13 4.1 GN/m2 

G23 3.4 GN/m2 

Poisson’s ratio    
0.3 

Density    
1520 kg/m3 

 

In order to check the validity of the present method, some comparisons were performed. These comparisons were 

selected to cover the cases of symmetrically and non-symmetrically laminated beams.  

Table (2) shows comparisons with Chandrashekhara et al. [2]. The comparison shows the differences between the 

non- dimensional fundamental frequencies [
2

1

2. hEL   ] of symmetric [  ///  ] angle-ply beams 

with different boundary conditions for aspect ratio of (L/h=15). The angle    varies from 
o0  to 

o90  with a step (

o15 ). The comparison showed a difference of less than 0.06% for the angle zero, increasing to about 0.30% for higher 

values of the angle   .  

Table 2 Non-dimensional fundamental frequencies [
2

1

2. hEL   ] of symmetric [  ///   ] angle-

ply beams (L/h = 15). 

                 (deg.) 

Beam  

Type 

0 15 30 45 60 75 90 

Hinged-

hinged 

present 2.6545 2.5091 2.1021 1.5356 1.0108 0.7592 0.7303 

Ref. [2] 2.6560 2.5105 2.1032 1.5368 1.0124 0.7611 0.7320 

Clamped- 

Clamped 

Present 4.8397 4.6554 4.0927 3.1826 2.1996 1.6838 1.6225 

Ref. [2] 4.8487 4.6635 4.0981 3.1843 2.1984 1.6815 1.6200 

Hinged- 

Free 

present 4.0907 3.8707 3.2513 2.3825 1.5716 1.1814 1.1364 

Ref. [2] 4.0931 3.8728 3.2530 2.3841 1.5738 1.1840 1.1389 

Free-free 
Present 5.8895 5.5749 4.6875 3.4389 2.2702 1.7070 1.6420 

Ref. [2] 5.8923 5.5774 4.6894 3.4407 2.2730 1.7105 1.6453 
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Clamped- 

Free 

present 0.9817 0.9246 0.7674 0.5547 0.3625 0.2715 0.2611 

Ref. [2] 0.9820 0.9249 0.7678 0.5551 0.3631 0.2723 0.2619 

Clamped- 

Hinged 

Present 3.7257 3.5550 3.0544 2.3017 1.5502 1.1745 1.1306 

Ref. [2] 3.7305 3.5593 3.0573 2.3032 1.5511 1.1753 1.1312 

 

Table (3) presents a comparison with Abramovich and Livshits [4] of the non-dimensional frequencies of symmetric 

[0/90/90/0] cross-ply graphite-epoxy beams for aspect ratio of (L/h = 10). The beams considered are hinged-hinged, 

fixed-free, and fixed-fixed with immovable ends. Here, the authors introduced the secondary effect of coupling 

between bending and torsion in their analysis, which is small, compared with the other secondary effects. For the 

hinged-hinged beam, a percentage difference of less than 0.16% was recorded for the fundamental frequency, and less 

than 0.54% for both fixed-free and fixed-fixed beams. This difference was observed to increase as the mode order 

increases (less than 1.4%) for the seventh mode for all beams considered. In addition, Table 3 shows the modes with 

predominance of longitudinal vibration.  

Table 3 Non-dimensional frequencies [
2

1

2. hEL   ] of symmetric [0/ 90/ 90/ 0] cross-ply beams  

(L/h = 10) 

 

Mode 

No. 

Hinged-hinged 

(Immovable) 

Fixed-free 

(Immovable) 

Fixed-fixed 

(Immovable) 

Present Ref. [4] Present Ref. [4] Present Ref. [4] 

1 2.3157 2.3194 0.8866 0.8819 3.6855 3.7576 

2 6.9813 7.0029 4.1062 4.0259 7.7244 7.8718 

3 12.004 12.037 8.9536 9.1085 12.381 12.573 

4 17.010 17.015 11.504* 12.193* 17.192 17.373 

5 22.015 21.907 13.924 14.080 22.119 22.200 

6 23.007* 23.007* 18.980 18.980 23.007* 23.007* 

7 27.094 27.094 24.037 24.037 27.125 27.125 

 

(*)  Modes with predominance of longitudinal vibration. 

The last comparison was carried out with the results of Marur and Kant [6]. Table (4) compares the first six modes of 

the non-dimensional frequencies [
2

1

2. hEL   ] of symmetric [ 0/90/90/0 ] cross-ply, graphite-epoxy, 

clamped-free beam with aspect ratio of (L/h = 15). The authors applied the higher-order shear deformation theory 

(HOSDT) in the analysis, whereas, the present method uses first-order shear deformation theory. The comparison 

shows a percentage difference of less than 0.03% for the fundamental mode of vibration. This difference increases 

with the mode order to less than 3.6% for the sixth mode. 

Table 4 Non-dimensional natural frequencies [
2

1

2. hEL   ] of   symmetric [ 0/90/90/0  ] cross-ply 

clamped- free beam. (L/h = 15). 

Mode No. Present Ref. [6] 

1 0.9238 0.924 
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2 4.8886 4.985 

3 11.4556 11.832 

4 17.2550* - 

5 18.8481 19.573 

6 26.7793 27.720 

 

(*)  Modes with predominance of longitudinal vibration. 

It is obvious from the numerical results given in Table (2) above, and Table (5) below, that the values of non-

dimensional natural frequencies of various beams generally decrease as the angle of orientation of fibers with respect 

to the longitudinal axis of the beam is increased. 

  

Table 5 The first three non-dimensional modes of free vibration of symmetric   ///   laminated beams 

with immovable ends. L/h=10. 

Angle  

   

Mode 

No. 

Beam type 

CF HH CC HC HF FF 

30o 

1 

2 

3 

0.7465 

3.7279 

8.4193 

1.9918 

6.4128 

11.4744 

3.4380 

7.4386 

12.7816 

2.7113 

6.9645 

11.7816 

3.0503 

7.9206 

13.1707 

4.3728 

9.5329 

14.9573 

60o 

1 

2 

3 

0.3596 

2.0893 

5.3017 

0.9943 

3.6853 

7.4807 

2.0601 

5.0523 

8.8047 

1.4899 

4.3780 

8.1620 

1.5370 

4.5879 

8.6142 

2.2088 

5.5663 

9.8029 

90o 

1 

2 

3 

0.2597 

1.5522 

4.0677 

0.7224 

2.7525 

5.7774 

1.5544 

3.9654 

7.1377 

1.1020 

3.3519 

6.4646 

1.1184 

3.4324 

6.6580 

1.6077 

4.1694 

7.5785 

 

Similar values of frequencies for symmetric   ///   laminated beams with immovable ends and aspect ratio 

of 10 are plotted against the angle of orientation for the range from 0 up to 90 degrees in Fig. (3) to Fig. (8). The 

influence of fiber orientation becomes more noticeable as the mode order increases, and significant variations of 

frequencies were observed up to an angle of approximately 70 degrees. Beyond this angle, the variations in the 

frequencies are very small.  

Increasing angle of orientation to more than 70 degrees leads to increase the coupling between bending and stretching 

effect, which causes the laminated beam to be stiffer, and thus the variation in natural frequencies decreases. In 

addition, the values of non-dimensional natural frequencies of the longitudinal modes of free vibration are observed to 

decrease as the angle of fibers orientation is increased. 

 

4. CASE STUDIES 

Some important cases, which related to the fiber orientation, were studied and presented here. The first case is 

repeated or alternating set of layers in similar beams. Table (6) shows the non-dimensional natural frequencies of 
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symmetric  60/60/60/60   and  260/60/60/60   laminated beams respectively. Both beam laminations 

have the same aspect ratio of 15 

 

 

 

The first set of beams contains four layers oriented as shown in Fig. (9)a, whilst the other set contains eight layers as 

shown in Fig. (9) b. It is observed that these two sets have the same natural frequencies for same aspect ratio. In this 

case, equal values of the coefficients  D, B, ,A and sA will be obtained for both beams and consequently the resulting 

inertia and stiffness matrices are the same for both. 

 

 

 

 

 

 

 

 

 

 

 

                                                     (a)  60/60/60/60             (b)  260/60/60/60                          



Imad-Eldin Mahmoud Mahdi et al., Influence of Fiber Orientation on the Natural Frequencies of Laminated… 
 

www.ijerat.com Page 40 

Figure 9 Two sets of beam laminations 

 

Table 6 Non-dimensional frequencies of a symmetric [60/-60/-60/60] and [60/-60/-60/60]2 laminated beams with 

immovable ends, (L/h = 15) 

Mode No. 
Beam type 

    CF         HH         CC           HC            HF            FF 

1  0.3623     1.0101     2.1928     1.5475      1.5703     2.2680 

2  2.1913     3.8941     5.6775     4.7703      4.8867     5.9775 

3  5.8269     8.2922   10.3643     9.3341      8.4639   11.0406 

4 8.4639   13.7890   15.8761   14.8504     9.6260   16.9278 

5 10.6899   16.9278   16.9278   16.9278   15.3764   17.0272 

6 16.4306   20.0246   21.9566   21.0111   21.7950   23.6152 

7 22.7569   26.7316   28.4256   27.5969   25.3918   30.5717 

8 25.3918   33.7270   33.8557   33.8557   28.6323   33.8557 

9 29.4652   33.8557   35.1607   34.4580   35.7194   37.7414 

10 36.4166   40.8914   42.0767   41.4943   42.3198   45.0240 

11 42.3198   48.1496   49.1142   48.6389   42.9470   50.7839 

12 43.5180   50.7839   50.7839   50.7839   50.2463   52.3564 

 

The second case is reversed lamination order of similar beams. Two lamination sets were considered which are 

 90/60/30  and  30/60/90 . The results of their non-dimensional natural frequencies are given in Table (7) for an 

aspect ratio of 15. It is obvious that these frequencies are the same for both sets.  

Table 7 Non-dimensional frequencies  2

1

4 hEL   of a non-symmetric [30/60/90] and [90/60/30] 

laminated beams with immovable ends, (L/h = 15). 

 

Mode No. 
Beam type 

CF           HH            CC              HC             HF           FF 

1 0.4110      1.4577       2.4557       1.8383       1.7642     3.121 

2 2.4597      4.3308       6.2650       5.3717       5.4235     6.5715 

3 6.4537      9.4175      11.2789     10.2659      9.9128    12.7081 

4 11.5603     14.6227     17.0649     15.9794    12.1937    16.8666 

5 12.2368     21.6173     23.3665     21.8096    16.7618    22.6558 

6 17.7284     21.9998     23.9363     23.6494    23.5247    25.6082 

7 24.2916     29.1040     30.0143     29.4584    29.9290    33.7244 

8 31.0676     35.2855     36.8563     36.2011    34.6973    38.3378 

9 35.5049     42.9879     43.8799     43.1304    37.6734    44.3434 

10 38.3008     43.6059     46.0794     45.0979    45.2069    47.7745 
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11 45.4855     50.7299     51.0365     50.8438    51.5700    55.9195 

12 52.3938     57.2216     58.1143     57.7467    55.9437    60.1605 

 

The last case is the incorrectly oriented layer. The cases studied here are symmetric  0/0/0/0/0/0/0/0  laminated 

beams with immovable ends. If the orientation of first layer is incorrectly made 90o rather than 0o, the values of non-

dimensional frequencies generally decrease as could be seen in Tables (8) and (9) respectively.  
 

Table 8 Non-dimensional frequencies  2

1

4 hEL   of a symmetric [0/0/0/0/0/0/0/0] laminated beam with 

immovable ends, (L/h = 15). 

Mode No. 
Beam type 

CF            HH          CC           HC          HF           FF 

1 0.9817     2.6541     4.8376     3.7246     4.0898     5.8874 

2 5.1648     8.9441   10.7896     9.9260   11.1075   13.4514 

3 12.0255   16.5385   17.7513   17.1675   19.0527   21.7104 

4 19.5924   24.3920   25.1158   24.7637   23.6325   29.8793 

5 23.6325   32.2089   32.6494   32.4317   27.0890   37.8995 

6 27.4086   39.9335   40.2085   40.0724   35.0157   45.7461 

7 35.2037   47.2649   47.2649   47.2649   42.8138   47.2649 

8 42.9341   47.5714   47.7513   47.6616   50.5041   53.4823 

9 50.5808   55.1405   55.2611   55.2012   58.1111   61.1084 

10 58.1648   62.6584   62.7423   62.7003   65.6557   68.6789 

11 65.6912   70.1399   70.1988   70.1695   70.8974   76.1718 

12 70.8974   77.5974   77.6400   77.6186   73.1538   83.6474 

 

This occurs because increasing of angle of orientation cause a decrease in the values of the natural frequencies as 

discussed above. The maximum and minimum percentage decreases in the values of the fundamental mode are about 

16% and 11% respectively. This percentage increases if the mode order is increased. It may be expected that these 

differences decrease as the number of layers is increased.  

 

Table 9 Non-dimensional frequencies  2

1

4 hEL   of a non-symmetric [90/0/0/0/0/0/0/0] laminated 

beam with immovable ends, (L/h = 15) 

Mode No. 
Beam type 

CF           HH            CC           HC          HF          FF 

1 0.8264     2.2976     4.3185     3.2598     3.4852     5.1003 

2 4.5310     7.8994     9.9409     8.9775     9.8368   11.9430 

3 10.8769   15.1199   16.6260   15.8984   17.4000   19.9305 

4 18.1346   22.7868   23.8005   23.3130   22.1084   27.9180 

5 22.1984   30.5716   31.2166   30.8959   25.3333   35.9901 
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6 25.7873   38.2588   38.7125   38.4945   33.2368   42.8836 

7 33.5147   43.9545   44.2959   44.1090   41.0260   44.8354 

8 41.2171   45.9369   46.2202   46.0926   48.7384   51.5969 

9 48.8585   53.5260   53.7075   53.6152   56.3351   59.3045 

10 56.4303   61.0294   61.1672   61.0995   63.8921   66.7923 

11 63.9352   68.5084   68.6022   68.5547   65.9928   74.3334 

12 66.2190   75.9420   76.0163   75.9798   71.4242   81.6580 

 

 

6. CONCLUSIONS 

 

In this paper, a first-order shear deformation theory was applied in the analysis, and a finite element model has been 

formulated to predict the non-dimensional natural frequencies and to study the influence of fibers orientation on the 

natural frequencies. Twelve end conditions were studied which are clamped-free, hinged-hinged, clamped-clamped, 

hinged-clamped, hinged-free, and free-free beams with immovable and movable ends. The main conclusions are:   

(1) Similar beams, which are either symmetrically laminated   ///   or anti-symmetrically laminated

   /// , have equal natural frequencies, since the coefficients 11C and 55C  are equal for both cases (see Eqn. 

(5)). 

(2) Repetition of a set of layers in symmetric or anti-symmetric similar beams does not alter the natural frequencies of 

the beam. e.g.   ///   or  
Sn)///(   , where ... 3, 2, ,1n  . 

(3) If the lamination order of a laminated beam is reversed, the natural frequencies will remain the same. e.g. 

(30/60/90) or (90/60/30).  

(4) The natural frequencies of a laminated beam generally decrease as the fiber orientation angle increases. 

(5) The error in natural frequencies of a laminated beam resulting from an incorrectly oriented layer will decrease if 

the number of layers is increased and/or the angle of orientation of the incorrectly oriented layer is decreased. 
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