

International Journal of Engineering Research and

Advanced Technology (IJERAT)
E-ISSN : 2454-6135

DOI: http://dx.doi.org/10.31695/IJERAT.2018.3279
Volume.4, Issue 6

June -2018

www.ijerat.com Page 16

Verification cases and procedure for IP-core development

Dr.Manju Nanda
1
 and P Rajshekhar Rao

2

Sr. Principal Scientist
1
, Research Scholar

2

Aerospace Electronics & Systems Division
1

CSIR- National Aerospace Laboratories
1

Bangalore
1

Department of Avionics
2

Inst. Of Science & Technology
2

Jawaharlal Nehru Technological University
2

 Kakinada
2

 India

ABSTRACT

The main objective is to perform the module level testing of requirement(MLITP) given and verify the completeness, compliance

and correctness of the implemented functionality with reference to the Hardware Design Data (HDD) requirements followed by

functional required document(FRD) mapped to hardware required document (HRD) .Basically this paper tells about for any

module under functionality testing to perform as per the requirement, some mapping to be follow as per DO-254 which includes

the safety analysis as priority and traceability requirement plays a vital activity to complete the functionality testing under test

cases scenarios. Regardless of whether the design and verification tools can demonstrate that a plan is practically right under all

conditions that were considered, design errors in the hardware can even now happen because of conditions beyond the scope of

the design tools. The most ideal approach to maintain a strategic distance from these mistakes is to have an accomplished design

and verification staff with learning of the device confinements. This will enable the group to distinguish potential issues while still

in the design phase and permit error mitigation techniques to be incorporated.

Key Words: Hardware requirement document, tool usage, code coverage, IP-core, FPGA, Hardware functional

requirement.

1. INTRODUCTION

Verification cases and procedure includes test environment like requirement-based verification (RBV).). Addition to RBV

examinations, for example, elemental analysis, formal analysis, and safety specific analysis are performed. . In many regards, this

procedure is a parallel to RTCA/DO-178 verification requirement for software. Concentrating on simply, the verification

procedure, the RTCA/DO-254 confirmation stream for a DAL. A design can be abridged as takes after[1]:

1.1. Requirements based verification

http://dx.doi.org/10.31695/IJERAT.2018.3279
http://www.ijerat.com/

P Rajshekhar Rao et. al., Verification cases and procedure for IP-core development

.

www.ijerat.com Page 17

Use guided test vectors to confirm all requirements.

1.2. Elemental analysis

Several measurements might be utilized however explanation scope best matches the necessities of basic examination.

1.3. Formal analysis

Is proposed for equipment with simultaneousness or adaptation to non-critical failure.

1.4. Robustness testing

Is added to guarantee the device capacities effectively in all legitimate conditions.

The hardware design plan describes the procedures, methods and standards to be applied and the processes and activities to be

conducted for the design of the hardware item.

The hardware testing process involves three mode of testing they are:

1.4.1. Module level testing

In the unit level testing, a module is confirmed in its own test condition to demonstrate that the logics, control, and information

ways are practically right. The objective of module level test is to guarantee that the segment/unit being tried complies with its

determinations and is prepared to be coordinated with different subcomponents of the item. In unit level confirmations great

coverage rate is normal. It is the little nuclear module in the IP core utilitarian piece, which can work autonomously. Module

testing is unit trying, i.e. testing a specific module. Normally a task is separated into smallest atomic known as modules, testing

these modules independently to test in the event that they are working is known as module testing. It is only the unit testing [2].

1.4.2. Integration level testing

Integration Testing comprises of the efficient combination and execution of product components. Various levels of integration

testing are conceivable with a combination of equipment and programming parts at a few extraordinary levels. The objective of

integration testing is to guarantee that the interfaces between the components are right and that the product segments consolidate

to execute the product‟s usefulness accurately [4].

1.4.3. Target level testing

Target level testing will addressed in high-level interface test plan (HLITP) document. Each module will be tested for the

functionality. The effected terms or scenarios while implementing in advance tool verification they are

1.4.3.1. Functionality

Each module will be tested with respect to requirement, architecture, and design.

1.4.3.2. Performance

Each module will be tested to performance stated against the design.

1.4.3.3. Safety

Each module will be tested with respect to safety of IP- core with respect to Level A.

1.4.3.4. Coverage

Each module will be tested with respect to coverage for statement, branch, condition and toggle.

Test cases will be generated to monitor errors such as an invalid instructions operation code, divisible by zero, division overflow,

and single event upset as shown in below Table 1.1.

http://www.ijerat.com/

International Journal of Engineering Research And Advanced Technology, Vol.4, Issue 6, June-2018

www.ijerat.com Page 18

DOI : http://dx.doi.org/10.31695/IJERAT.2018.3279

Table1.1. Hardware terms for IP-core

2. OBJECTIVES

Hardware system process mapped to hardware requirement as per DO-254 which is allotted to the hardware item to be approved

before the design implementation. In addition to the requirement tracer for compatibility the system performance for design

requirement to correct the design code as well as FPGA specification. The mechanism for recognizing requirements attributes

(e.g., validated, derived, safety-critical, and so on), as this can enable you to track the suitable exercises related with different

classifications of necessities, for example, robustness testing of security basic properties and system level validation of derived

requirements. ReqTracer, presented in the area Requirements Capture (Including Management and Traceability) can help with

these approval assignments. Processing procedure or verification procedure is to verify the Complex Electronics Hardware which

approaches DAL A/B. This guideline verifies the test results and reports generation as per design code level [7].

2. Overview of approach

At integration level, the functionality, safety and performance will be tested with the input and output signal, interfaces between

the modules, data flow and signal control flow for the IP-core.

2.1. Functionality

 What is the trigger point to transmit the data?

 What pattern of the data is to be sent?

 In case the trigger does not come, then what?

Terms descriptions

Compliance A Compliance is the satisfaction of a standard guidelines objectives

Finding A Finding is identification of non-compliance to a standard guidelines objective

Observation An Observation is identification of a potential process improvement

Soft IP-core

Soft IP-cores are the category of IP-core that comes to the user with the most

lifecycle data. This data generally include register transfer level (RTL)

descriptions in languages such as Verilog or VHDL. This allows a detailed

analysis and optimization (and eventually customization) of the soft IP-cores

for the intended application. Soft IP-cores still need to be synthesized, placed

and routed (P & R) in the target Airborne Electronics Hardware (AEH) device.

Firm IP-core

Firm IP-cores are next in the decreasing level of design description, specified in

technology-independent netlist level format. This allows the IP provider to hide

the critical IP details and yet allow the IP user to perform some limited amount

of analysis and optimization during placement, routing, and technology-

dependent mapping of the IP block. Firm IP-cores still need to be placed and

routed in the AEH device.

Hard IP-core

Hard IP-cores have the least design description and lifecycle data, specified in

technology-dependent physical layout format using industry standard

languages such as stream, polygon, or GDSII format. Hard IP-cores can be

thought of as a “black box” that, due to the lack of knowledge about the

internal detailed design, they cannot be fully analyzed and/or co-optimized.

Hard IP-cores come with a detailed specification of integration requirements in

terms of clock, testing, power consumption, interfaces and a host of other

parameters. Hard IP-cores are embedded in the PLD/ASIC at the silicon level.

http://www.ijerat.com/
http://dx.doi.org/10.31695/IJERAT.2018.3279

P Rajshekhar Rao et. al., Verification cases and procedure for IP-core development

.

www.ijerat.com Page 19

 In case the data pattern fails to transmit at required rate, then what?

 In case the clock fails, then what?

 Signals control flow analysis.

2.2. Safety

It will be tested for the safety of the IP-core and related hardware. Any failure in the system the component should able to retrieve

by itself. Testing method will define the set of criteria to be applied in the testing of the IP-core. The criteria will be tested and

demonstrated as follows.

Table1.2. Testing methods for IP-core

S.no
Mode of

testing
Description Tool usage

1. Module level

testing
Functionality

RTL design code to

behavioural

2.

Integration

level testing

Inter-module

interaction,

control flow of the

information and

data flow

Post synthesis

verification model to

function simulation.

Post PNR verification

model HDL to function

simulation and static

timing analysis.

3. Target level

testing

Bit stream

generation
Chip scope pro-analyzer

PLD‟s hardware development cycle flow diagram with Validation/Verification process in parallel is shown in Figure 1.1. Activity

flow down across design and verification/validation process is also shown.

HDL/RTL
Design

Synthesis

Place &
Route

Bit Stream
Generation

Test Bench
Creation

Test
Plan

Static Timing
Analysis

Gate Level
Simulation

Gate Level/Timing
Simulation

Validation of Bit
Stream on Target

Design & Implementation
Processes

Verification & Validation Process

RTL Simulation

Figure1.1: Hardware Development Flow Diagram [9]

3. DETAILED DESIGN

The targets of the detailed design is to guarantee that the goals got from the framework prerequisites and equipment particulars can

be meeting in the framework plan on a low level of the design. In the event that the framework depends on a FPGA the detailed

outline can be composed in Verilog or VHDL code. The developments of test seats for framework and safety verification are

likewise made in the point by point plan. Detailed design incorporates the majority of improvement work and spans hardware

description language (HDL) coding through synthesis and furthermore place and route, however some may contend that place and

route falls under the execution stage [10]. During the detailed design process, HDL code must be composed to certain design

standards, confirmed, explored inside, reviewed remotely, kept under configuration management, and followed to program

requirements they are:

3.1. Dealing with the design flow: HDL Designer gives an organized workplace that, among other benefits, enables a group to

characterize the tool versions and scripts that will be keep running all through the process. Running a stage in the flow is as simple

as clicking the appropriate button, for example, “Simulate” or “Synthesize”. HDL Designer underpins Mentor Graphics design and

verification tools, as well as numerous FPGA vendor tools.

http://www.ijerat.com/

International Journal of Engineering Research And Advanced Technology, Vol.4, Issue 6, June-2018

www.ijerat.com Page 20

DOI : http://dx.doi.org/10.31695/IJERAT.2018.3279

3.2. Making/altering: HDL configuration is a content-based strategy to depict physical hardware and its functional behaviour.

Since it is content based, it can be composed by means of a straightforward word processor. In any case, this can be an escalated,

manual process. HDL Designer gives an option: a suite of advanced design editors (instead of straightforward content managers)

to encourage design development, including Interface-Based Design (IBD) spreadsheets.

3.3. Imagining/archiving: Often made physically, HDL reports and artifacts are essential for enhancing the comprehension of

the design (important for design reviews and code reuse) and are particularly valuable if the design must be reproduced later on.

HDL Designer robotizes the creation such documents and artifacts as pictures or design representations.

3.4. Code checking: DO-254 requires that groups characterize the principles they will use in a design procedure, including the

coding benchmarks they should stick to. These standards and rule assist maintain a strategic distance from downstream issues with

the design or configuration process. In a DO-254 program, the design code can be physically investigated against these norms as a

feature of the design surveys; however, this can be an excruciating, time-consuming, costly, and error-prone approach. A superior

technique is to enrol the assistance of a tool to consequently do this kind of checking and after that essentially audit the outcomes

as a major aspect of the design surveys. HDL Designer incorporates a HDL coding rules checker (or linter), that incorporates an

arrangement of predefined (and modifiable) manage sets. Essential among these is the “DO-254 Rule set”, an arrangement of

configuration checks got from genuine venture encounters with organizations doing wellbeing and mission-basic plan and

assembled with contribution from roughly 20 individuals from the DO-254 User Group.

3.5. Evaluating/examining: The second DO-254 review, or SOI-2, is commonly a design audit. Preceding the official

confirmation review, the design group ought to have had various interior surveys that cover the architecture, changes to

requirements, coding, following HDL code to the requirements, etc. HDL Designer can help encourage such surveys by indicating

source code, charts, venture chain of importance, and an assortment of other appropriate information, and after that catching these

in a HTML site, which empowers venture audits crosswise over groups and topographies. The activities/results of the review can

likewise be caught into this HTML arrangement to give evidence (a relic) of the survey procedure.

3.6. Tracing necessities: As it‟s composed HDL code ought to likewise be connected back to the appropriate requirements,

which is a procedure called &”labelling”. The far reaching altering situations of HDL Designer incorporate with Retrace‟s

(ReqTracer) “tagger” highlight to encourage the connecting of a HDL(hardware description language) usage to its necessities

source [12].

Figure.1.2. Requirement tracer [6]

4. METHODOLOGY

FRD

HRD

TLTP

MLTP

HDD

HDL/RT

L

ILTP

Implementation

onon

Verification and

validation

development path

http://www.ijerat.com/
http://dx.doi.org/10.31695/IJERAT.2018.3279

P Rajshekhar Rao et. al., Verification cases and procedure for IP-core development

.

www.ijerat.com Page 21

To describe the extent level of individual module level testing on FPGA, nevertheless, the Verification and validation (V&V)

approaches depicted will focus on the useful and execution parts of the prerequisites and particulars for the item. Methodologies

for deciding if an product, fulfils its prerequisites and determinations as for wellbeing, compactness, ease of use, practicality,

serviceability, security, and so on., although very important for many systems. It is possible to determine the applicability of

various V&V approaches and techniques [14]

Figure1.3: Applicability of various V&V approaches [17]

5. TEST APPLICATION APPROACH

The approach for applying functional tests to the design. Ordinarily, this includes either preloading tests into on-chip memory and

executing the test by means of the on-chip processor or applying the test all through the external interfaces to the device (test or

functional interfaces).

5.1. Results Checking
Instructions to confirm the design‟s reactions to function tests. This can be done by self checking techniques, golden model

(reference model) comparison, or comparing expected results files.

5.2. Test Definitions
Characterizes the tests that are to be performed and the model abstraction levels to which the tests are to be connected. In many

occurrences, a similar test will be connected to several model levels. For each test, the verification technology or tool and the

associated metrics ought to be incorporated. The metric shows when the test is finished. Metric can be characterized for

combinations of tests. For instance, 100 percent statement coverage will be accomplished when executing the greater part of the

simulation tests.

5.3. Test-bench Requirements
The test-bench necessities in light of investigating the contents of the verification definition table. The model sorts and abstraction

levels, model sources, and test-bench components (checkers, stimulus, and so on) should be considered. For formal verification,

characterize design properties and requirements.

5.4. Verification Metrics
Two classes of metrics ought to be tended to in the verification plan:

Correctness

Consistency

Necessity

Sufficiency

Product is

fault free

Item is

predictable

Product is

important

http://www.ijerat.com/

International Journal of Engineering Research And Advanced Technology, Vol.4, Issue 6, June-2018

www.ijerat.com Page 22

DOI : http://dx.doi.org/10.31695/IJERAT.2018.3279

Capacity measurements: Identifies tool capacity assumptions (run times, memory size, disk size, and so on) and confirms that

the assumptions made in creating the confirmation design remain constant hold true during the execution of that plan.

Quality measurements: Establishes when a verification undertaking is finished. Quality metrics incorporate functional coverage

and code coverage.

5.5. Regression Testing
The technique for Regression testing is to regret the fault analysis done by simulation based testing. The test design detail when

the regression tests are to be run (overnight, persistently, activated by change levels, and so on) and indicates the assets required

for the regression testing. Regularly, once the plan has been acknowledged and checked at a specific level, a formal control

methodology is put in place to deal with the plan updates to this brilliant model and the consequent re-verification. The test design

ought to unmistakably state at what level of abstraction the regression tests are to be run and recognize the tests to be utilized. The

regression test suite may be the full arrangement of tests recognized for the level of abstraction of the plan or a selected subset.

5.6. Directed Random Testing
The nature of a functional verification condition relies upon the stimulus that is connected to a DUT. A thorough test vector set

can be composed utilizing all combinations of the input signals, yet this is not possible, since it builds the simulation time

massively. In directed random testing, irregular address, data, and control signals are driven onto a bus, and at least one bus

protocol checkers verifies that bus protocol violations do not happen because of these cycles. This testing approach is appropriate

for bus validation. The test-benches are directed in that the test cycles created are not arbitrary nevertheless; make cycles that

stress the design in particular ways. The pattern generators can be set to make particular exchange composes, for example, read,

write, and read-modify write in a random sequence. For instance, 20 percent read, 30 percent write, 50 for read-modify-write. So

also, data and address fields can be produced in a random succession, however inside determined cut-off points or utilizing a

restricted arrangement of discrete esteems. These sorts of tests confirm corner conditions and successive or data-dependent

circumstances that are difficult to distinguish in simulation. With this philosophy, any algorithmic errors are recognized and

settled right on time in the design [16] [17].

6. RESULTS

6.1. Implementation

Figure1.4. Block diagram of FIFO

Figure.1.4. shows the block diagram of FIFO with six inputs and two outputs. The Buffer is works on the principle of

Asynchronous FIFO. When Areset_i is high then all the signals are reset to its initial value. When the Areset_i is low and Wr_en_i

is high then the 32 bit data from the previous module is written into the Buffer with respect to the WrClk_i pulses. When the

Areset_i is low and Rd_en_i is high then the 32 bit data which is stored in the buffer will be fetched by the next module with

respect to the RdClk_i pulses. If the Buffer is full then the Full_0 signal goes high which indicating that the data is available to

read for the next module Module.

FIFO

Areset_i

WrClk_i RdClk_i

wr_en_i rd_en_i

wr_data_i rd_data_o

Full_o

http://www.ijerat.com/
http://dx.doi.org/10.31695/IJERAT.2018.3279

P Rajshekhar Rao et. al., Verification cases and procedure for IP-core development

.

www.ijerat.com Page 23

6.2. Traceability

6.2.1. Hardware Design Data (HDD Requirement)
Hardware Design Data (HDD) requirements of Video Data Buffer which are to be tested as part of this module level testing are

tabulated in below table for port mappings and for logical requirements.

Table 1.3. Generic configuration ports of FIFO

Requirement

Identification

Generics

Name

Value

(in bits)
Interface Description

RDD_XXXX_006 FIFO shall be interfaced with generic interfaces & corresponding

values assigned as follows:

IMPL_STYLE 1 0 = distributed RAM

based, 1 = Block RAM

Based

FIFO_mode 1 0 = STD mode FIFO, 1 =

First word fall through

(FWFT) FIFO

FIFO shall be interfaced with generic interfaces

Data_width 32 data width of data in and

out port

FIFO_depth_widt

h

13 FIFO depth configuration

Table 1.4. Port map requirements for FIFO

Requirement

Identification

Interface

Name

Width

(in bits)

Interface Description

RDD_XXXX_007 FIFO module shall be interfaced with following port for

reset input:

Areset_i 1 Areset_i

RDD_XXXX_009 FIFO module shall be interfaced with following port for

writing into buffer:

WrClk_i

1 Pixel clock input interface

for writing data

wr_data_i 32 Output Data Stream as

data Sequence in terms of

http://www.ijerat.com/

International Journal of Engineering Research And Advanced Technology, Vol.4, Issue 6, June-2018

www.ijerat.com Page 24

DOI : http://dx.doi.org/10.31695/IJERAT.2018.3279

Requirement

Identification

Interface

Name

Width

(in bits)

Interface Description

32 bits

wr_en_i

1 Buffer Write Enable Signal.

Control Signal to write the

Data Into the FIFO.

1=Write; 0=Don't Write

 Full_o 1 FIFO Full signal output

RDD_XXXX_045

RdClk_i 1

rd_en_i 1 Buffer Read Enable Signal.

Control Signal to read the

Data from FIFO.

1=Read; 0=Don't Read

rd_data_o 32 Data out

The above tables indicate the following interfaces as per the given requirement which captures the functional requirement

followed by hardware requirement given in the design data requirement.

6.2.2. Libraries to include in Test Bench
Include the following libraries part of the test bench:

LIBRARY ieee;

LIBRARY modelsim_lib

USE ieee.std_logic_1164.ALL

use IEEE.STD_LOGIC_unsigned.ALL

use IEEE.STD_LOGIC_arith.ALL

use IEEE.STD_LOGIC_textio.ALL

use std.textio.all

use IEEE.numeric_std.ALL

use modelsim_lib.util.all;

6.2.3. Steps to Monitor Design’s Local Signal
The following procedural steps allows tester to monitor the design‟s local signals inside the test bench simulation scenario:

1. Include the library such as modelsim_lib & use modelsim_lib.util.all;

http://www.ijerat.com/
http://dx.doi.org/10.31695/IJERAT.2018.3279

P Rajshekhar Rao et. al., Verification cases and procedure for IP-core development

.

www.ijerat.com Page 25

2. Generate the un-clocked process with WAIT Statement within it.

3. Use the init_signal_spy function call as mentioned below:

SYNTAX:

process

begin

 init_signal_spy ("/<Source Signal with Path>/ ", "/<Destination Signal with Path>/");

wait;

end process;

6.2.4. Steps to log the report in the transcript window

1. Create a folder ARINC818_Tx_Test in Drive (x) in local system.

1. Copy XXXXXXX.vhd from CC, XXXXXX_TB06 and expected output files for assertion based testing to be copied

from CC,

2. Open the QuestaSim tool

3. Select file > Change Directory >Enter

4. Browse for folder window select the XXXXX_Test folder.

5. Select Compile > compile >enter

6. In Compile Source File window select both source code and Test bench files and enter Compile button.

7. If Create library pops-up “The library “work” does not exist. Do you want to create this library?” enter Yes to create

work library.

8. Observe and make sure for the Errors:0 and warnings:0.

9. After compilation enter done button.

10. Select Simulate > start Simulation >enter

11. In start Simulation window> Design >enter

12. Select Work library and expand (click on +)

13. Select Test bench file name (.VHD) and Resolution 100ps and select OK.

14. Sim-Default right click on the test bench then add to >wave> All items in design >enter

15. All signal will be added to the Wave Default.

16. In transcript window run simulation for 1 sec to verify the parameters with different resolution and the total no. of frames

per sec.

17. After run simulation completes then analyze the signals

Assertion is used to report the result of the test case in the transcript window

If test case is passed then

report "test case is passed" severity note;

else

assert false report "test case is failed" severity error;

6.2.5. Test Cases
The test cases are generated for the Normal scenarios for functional verification to cover the Hardware Design Data (HDD)

requirements which are mentioned in the table 1.3.. Coverage Report will be generated based on the test cases.

6.2.5.1. Normal Test cases

http://www.ijerat.com/

International Journal of Engineering Research And Advanced Technology, Vol.4, Issue 6, June-2018

www.ijerat.com Page 26

DOI : http://dx.doi.org/10.31695/IJERAT.2018.3279

All input and output of FIFO are to be verified for correct port mapping with Inst_Async_FIFO. The port interfaces are compared

with known values as per the HDD requirements. Assertions are used to verify whether the respective port mapped signals are

matched or not matched by comparing the expected and observed value.

6.3. Procedure

Test Case 1: Testing the port interfaces in port mapping level for all port mapped signals

(The input signals will be given to the module and check the output at the input /output interface of the instantiated FIFO buffer)

 This test case covers above requirement. The objective of this test case is to test the Generic and Port mapping of the

Async_FIFO instance in the module.

The following test conditions are to be followed:

1. Write a single Test bench with information as provided below.

2. Generate clock from test bench for input port WrClk_i of XXXX MHz (Time period= XXXX ns).

3. Generate clock from test bench for input port RdClk_i of XXXX MHz (Time period= XXXX ns).

4. All Inputs ports shall be assigned to any value based on the width of the input port.

5. Tapped the port signals of Inst_Async_FIFO to the test bench using init_signal_spy process.

6. Compare the values at the input ports of Inst_Async_FIFO to the input ports of buffer and assert true/false.

7. Compare the values at the output ports of buffer to the output ports of Inst_Async_FIFO and assert true/false.

6.4. Limitation

Firstly, Difficulty of Testing All Data- For most projects, it is illogical to endeavour to test the program with every single

conceivable contribution, because of a combinatorial explosion. For those inputs selected, a testing prophet is expected to decide

the accuracy of the yield for a particular test input. Secondly, Difficulty of Testing All Paths- For most projects, it is unfeasible to

endeavour to test all execution ways through the product, because of a combinatorial explosion. It is also not possible to develop

an algorithm for generating test data for paths in an arbitrary product, because of the powerlessness to decide path feasibility.

7. CONCLUSION

In HW/SW co-verification, integration and verification of the hardware and software occurs simultaneously. The Co-verification

condition gives a graphical UI (GUI) that is steady with the present equipment test systems and programming emulators/debuggers

that are utilized by the equipment and programming venture improvement groups. This empowers the software group to execute

the software straight forwardly on the hardware design. Additionally, the hardware design is stimulated with real input stimulus in

this way decreasing the endeavours required to creator the hardware test benches.

Highlights:

 Verifies both hardware and programming ahead of schedule in the design cycle. It offers adequate execution to run the

interface certainty tests, code sections, and individual driver and utility code.

Restrictions:

 Co-verification situations accessible today don't offer adequate execution to run finish application programming over the

target real-time operating system (RTOS) because of capacity and simulation speed problems.

http://www.ijerat.com/
http://dx.doi.org/10.31695/IJERAT.2018.3279

P Rajshekhar Rao et. al., Verification cases and procedure for IP-core development

.

www.ijerat.com Page 27

REFERENCES

[1] DO-254/ED-80, Design Assurance Guidance for Airborne Electronic Hardware, RTCA/ EUROCAE.

 [2] MIL-STD-1629A, Procedures for Performing a Failure Mode, Effects and Criticality Analysis, US DoD, Washington D.C.

[3] Prakash Rashinkar, Peter Paterson, Leena Singh, „System- on-a- chip verification‟, Kulwer Academic Publishers, Newyork,

Boston, London, Moscow.

[4]Application Note, ASIC design guidelines, Atmel Corporation, 1999

[5]Cummings CE, Sunburst Design, Inc.; Mills D, LCDM Engineering (2002) Synchronous resets? Asynchronous resets? I am so

confused! How will I ever know which to use? SNUG, San Jose

[6]Application Note, Clock skew and short paths timing, Actel Corporation, 2004

[7]ARP 4754 Certification considerations for highly-integrated or complex aircraft systems; SAE Systems Integration

Requirements Task Group AS-1c, ASD, Society of Automotive Engineers Inc.

[8]ARP 4761 Guidelines and methods for conducting the safety assessment process on civil airborne systems and equipment, SAE

Committee S-18, Draft 13a, Society of Automotive Engineers Inc.

[9]Bauer, M. and W. Ecker: “A VHDL-Based Hierarchical, Highly Flexible and Extendable Testbench Approach”. International

High Level Design Validation and Test Workshop, 1996.

[10]Swavely, G.W., Beaton, J., and W. Debany: “A Generic VHDL Testbench to aid in Development of Board-Level Test

Programm”, AUTOTESTCON, 1994.

[11]Heinkel, U. and W.H. Glauert: An Approach for a Dynamic Generation / Validation System for the Functional Simulation

Considering Timing Constraints. European Design and Test Conference, 1996.

[12]Zinn, A., Ecker, W., Bauer, M. and B. Bernard:”Comparison of Sequential VHDL and C Revised”. International HDL

Conference, 2001.

[13]Sztipanovits, J.: “Engineering of Computer-Based Systems: An Emerging Discipline”, Conference and Workshop on

Engineering of Computer-Based Systems, 1998.

[14]Drager, S.L., Hanna, J.P., and R.G. Hillmann: “VHDL Model Verification and System Life Cycle Support”, VHDL

International User Forum, Spring 1996.

[15]Goldbach M., Grams H., Glauert W., Hartl W. and Voit G.: “Simulation-Based Test Programm Verifiaction Using the SZ

Testsystem Environment”, IMSTW, 1998.

[16]Garbe, H., Jentschel, H.J., and R. Kaminski: “Multilevel Simulation in the Design of Communication Systems”, NE Science,

1994.

[17]Delvai M., Huber W., Rahbaran B., and A. Steininger: “An FPGA-Based Development Platform for the Virtual RealTime

Processor Component SPEAR”. IEEE International Workshop on Design and Diagnostics of Electronic Circuits and Systems,

2002.

[18]Lentz, K.P., Heller, J., and P.L. Montessoro: “System Verification using Multilevel Concurrent Simulation”, IEEE Micro,

1999, p.60-67.

[19]M. H. Schulz and E. Auth, “Improved deterministic test pattern generation with applications to redundancy identification,“

IEEE Trans. on CAD, Vol. 8, No. 7, July 1989, pp. 811-816.

[20]Neil H.E. Weste and David Harris, CMOS VLSI Design: A Circuits and Systems Perspective (3rd Edition), Addison Wesley;

3rd edition (May 11, 2004), ISBN: 0321149017.

http://www.ijerat.com/

International Journal of Engineering Research And Advanced Technology, Vol.4, Issue 6, June-2018

www.ijerat.com Page 28

DOI : http://dx.doi.org/10.31695/IJERAT.2018.3279

[21]Y. Kim, M.-H. Yang, Y. Lee, and S. Kang, ―A new low power test pattern generator using a transition monitoring window

based on BIST architecture,‖ in Proc. Asian Test Symp. (ATS), Dec. 2005, pp. 230–235.

http://www.ijerat.com/
http://dx.doi.org/10.31695/IJERAT.2018.3279

