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ABSTRACT  

This work presents dynamic stability analysis of general high speed milling process by higher order semi-analytical method. The 

first order full-discretization method (1
st
 FDM) and second order full-discretization method (2

nd
 FDM) are presented. These 

methods based on the direct integration scheme. The governing mathematical model applied is the delay- differential equation 

with single time periodic delay taking regenerative effect into account. The stability lobes diagrams are presented for single 

degree of freedom mechanical model and two degree of  freedom mechanical model.  Up- milling and down-milling stability chart 

are presented for various radial immersion ratio in order to compare accuracy of up- and down-milling. It  is demonstrated  that  

for  full-immersion down- milling and up- milling stability lobes diagram are the same approximatively but in other cases down- 

milling is more accuracy than up-milling both for single degree of freedom and two degree of freedom.the computational time of 

calculation of eigenvalue is also variable for different computational parameter. The rate of convergence for half immersion and 

low immersion is presented for variable parameters. 

Key Words: High Speed Machining, Milling Stability, Chatter, Semi-Analytical Method. 

_________________________________________________________________________________________________________

1 INTRODUCTION  

High Speed Machining (HSM) enables the possibility not only to reduce process time but other and above all to improve 

workpiece accuracy and workpiece surface. HSM is mostly related to the application of high cutting speeds higher than in 

conventional machining. Althout his importance to resolve many lacks of tradditional machining and economical fact, HSM has a 

serious problem that made us a lot of attention. One of the most intriguing problems that face HSM process is self-excited 

vibrations known in the literature as chatter. Regenerative chatter and mode coupling chatter was followed as the mains sources of 

self-excited vibration by authors [1] and [2]. Zhang, et al. investigated the occurrence of both chatters using different cutting tools 

[3]. During their experiments, the regenerative chatter was observed while using a long flexible tool and mode coupling chatter 

was observed while using a short tool with larger stuffiness. The authors explained that the different results are due to the impact 

of tool structure which changes the stability boundary for both chatter mechanisms. The regenerative chatter occurs when the 

subsequent machining on the rough surface after the previous cutting path. During milling, the next tooth in cut collides with the 

wavy surface of the previous tooth and generates a new wavy surface. The chip thickness and the cutting force vary due to the 

phase difference between the wave left by the previous tooth and the wave generated by the current one [4]. On the other hand, 

mode coupling chatter means the vibration exists simultaneously in two or more directions coupling to each other with different 

characteristics. Tlusty and Ismail explained that mode coupling effect may occur if the natural modes are closely matched in 

principal directions[5]. Without any regeneration, the structure vibrates simultaneously in the different directions at the same 

frequency and a phase shift. 

Generally, the dynamic of the milling is modeled by delayed differential equations (DDEs) with time periodic parameters. For 

chatter stability in milling process stability lobes diagram is necessary to predict optimal selection of spindle speed and cutting 

depth to prevent chatter and to ameliorate production efficiency. Many methods have been put forward to predict chatter stability 

in milling process. Zero order frequency method was presented by Altintas and Budak, they used the Fourier series expansions for 

periodic terms but only the constant term in each Fourier series expansion is considered [6]. In order to ameliorate the application 
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of the frequency domain methods, Budak and Altintas presented also the multi-frequencies method [7]. The multi-frequencies 

method is expand by [8]. The stability analysis is performed by expanding the periodic matrix into Fourier series, and using the 

basic physical properties of dynamic cutting and regeneration mechanism. Ding et al proposed an efficient and accurate time 

domain method through directly approximating the original Delay Differential Equation by algebraic equations based on the 

differential quadrature method (DQM), without the help of the integral equation [9]. Butcher and co-workers presented the 

Chebyshev polynomial based method, the stability charts are produced for several examples of time-periodic DDEs, including the 

delayed Mathieu equation and a model for regenerative chatter in impedance-modulated turning and the Chebyshev collocation 

method [10,11]. They used a collocation expansion of the solution at the Chebyshev collocation points during the cutting period, 

and a state transition matrix for the free-vibration period where no cutting occurs. 

Several author presented semi- discretization method (SDM) for milling stability analysis. SDM was applied to determine the 

stability charts of the Mathieu equation for delayed systems by [12]. Elbeyli and co-worker presented and analyzed Zeroth-, 

improved zeroth- and first-order versions of the SDM technique for a second order periodic system with time delay for feedback 

control design of linear systems with time delay [13]. Insperger et al extended to the higher order SDM [14]. They introduced this 

method to determine the stability charts of the Mathieu equation with continuous time delay. Updated semi-discretization method 

for periodic delay- differential equations with discrete delay was presented by Insperger and coworker [15]. They established the 

convergence of the semi-discretization approximation method for a class of delay equations modeling the milling process and they 

showed that semi-discretization preserves asymptotic stability of the original equation, thus it can be used to obtain good 

approximations for the stability charts. Henninger et al presented an improved the computational efficiency and accuracy of the 

semi- discretization method for periodic delay-differential equations. The improving SDM increased computational efficiency of 

the semi-discretization method [16]. Ahmadi and Ismail in 2012 presented Multi-Frequency Solution and the Semi-Discretization 

Method to establish the stability lobes in milling by using damping process [17]. The basic formulations are presented along with 

the comparisons between the two approaches. It is shown that the Semi-Discretization Method provides accurate results over the 

whole tested range of cutting speed, whereas higher harmonics are required to achieve the same accuracy when applying the 

Multi-Frequency Solution at low speeds. Wang et al. studied the regenerative chatter in the high-speed vertical milling of thin-

walled workpiece made of titanium alloy based on the frequency domain method [18]. 

In the last decade Ding et al [19] proposed firstly the full- discretization method based on the direct integration scheme. They 

presented stability lobes by varying the radial immersion ratio only. Second order full- discretization method based on the direct 

integration scheme are presented by them but the stability lobes are presented in the case of different computational parameter 

[20]. The third order full-discretization was studied by [ 21,22] point of these methods is that the dynamics of the milling process 

considering the regenerative effect is described by a linear time periodic system with a single discrete time delay, and the response 

of the system is calculated by a direct integration scheme with the help of discretizing the time period. Higher order FDM was 

presented by Ozoegwu in 2015 presented four and five order cases full- discretization method in order for the first time settle this 

curiosity of what becomes of accuracy of the full-discretization method beyond third order theory [23]. They are increase of 

convergence but decrease of computational time. Insperger presented Full- discretization and semi-discretization for milling 

stability prediction [24]. It was shown that the FDM and the SDM are similar in the sense that both methods approximates the 

original Delay Differntial Equation by a series of Ordinary Differential Equations(ODEs). Recently Zhang proposed Simpson 

method to resolve charter stability problem and his result is very simple than higher order semi discretization [25]. Jin Bo and co-

workers introduced a generalized form of the Runge–Kutta method (GRKM) based on the Volterra integral equation of the second 

kind. It was shown that the method had higher convergence rate and computation accuracy, validated by comparisons with the 

semi- discretization method [26]. More recently the so-called semi-analytical holistic interpolation method (HIM) with both high 

efficiency and accuracy was proposed by Cheng jin and co-worker to predict stability of milling processes which reduce more 

computational time than Update Full Discretization Method (UFDM) [27]. 

Several author introduced two main analytical methods for stability prediction of general milling operation, the finite element 

analysis in time method (FEATM) and the SDM. They presented up- milling and down- milling stability analysis for varying 

radial immersion for single degree of freedom and single fluted tool [28,29]. The aim of this research is to make the comparison of 

stability lobes diagram in order to enlarge study and increase stability in high speed milling process by using 2
nd

 FDM. This work 

presented stability analysis of chatter stability of up- and down-milling process. This article is organized as follows: the 

introduction of cutting models, a model equations and stability analysis of milling process is presented in Sect. 2, Application of 

numerical simulation of the milling stability are offered in Sect. 3, stability diagrams in Sect. 4, rate of convergence in Sect. 5  we 

offer our conclusions in sect. 6. 

2 MODEL EQUATIONS AND STABILITY ANALYSIS OF MILLING PROCESS 

[19,25, 32] presented the dynamic milling process taking the regenerative effect into account as follow 
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 ̇( )    ( )   ( ) ( )   ( ) (   )                                                              (1) 

Where   is a constant matrix representing the time invariant nature of the system.  ( ) and  ( ) are the periodic-coefficients 

matrix with  ( )   (   ) and  ( )   (   ), T is the regenerative delay which equals to the time period and  ( ) is the 

state variable of the system.  

The solution of (5) can be expressed using direct integration scheme as follow  

 ( )   (    ) (  )  ∫{ (   ), ( ) ( )   ( ) (   )-}  

 

(  )

                                             ( ) 

Where   ((    ) denote the value of  ( ) at   (    ).  (    )  can be obtained from (2) as follow 

 (    )      (  )  ∫*   , (      ) (      )-+  

 

 

 ∫{   [ ((      )) (        )]}  

 

 

              ( ) 

Equation (8) can be expressed as follows 

 ((   ) )      (  )  ∫*   , (      ) (      )-+  

 

 

 ∫{   [ ((      )) (        )]}  
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 (      ),  (      ) are the time - periodic item. It is approximated by linearly the first-order Lagrange interpolation 

polynomial; the two boundary values at the time interval,   (    )], resulting in 
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Where   
( )
      ,   

( )
      and    

( )
 (       )   ,   

( )
 (       )   and    and    denote respectively the 

value of  ( )and  ( ) sampled at the time      . 

2.1 First order Full-Discretization Method  

For first order discretization the state item  (      )  and delayed term  (        ) are both in. (4) can be 

approximated too linearly using   ,       and    ,        respectively, i.e the two boundary values at the time 

interval,   (   ) ] and ,(    ) (     ) - respectively. 
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The matrices       in (  )  (  ) are presented and expressed explicitly in terms of matrices    and     as follows: 

   ∫    
 

 

      (     )     (    )         (  ) 

    ∫     
 

 

              ∫    
 

 

      (    
    )   (  ) 

   ∫      
 

 

      (     
    )  (  ) 

The matrix form of. ( ) can be expressed as follow: 

[
 
 
 
 
 
 
 
 
    
  
    
    
 

      
      
      
      ]

 
 
 
 
 
 
 
 

 

[
 
 
 
 
 
 
 
 
                    

         
         
         
         
         
         
         
         ]

 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
  
    
    
    
 

      
      
      
    ]

 
 
 
 
 
 
 
 

 (  ) 

Where 
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the discrete map according to eq.8 can be defined as follow 

                                                                                                                               (  )                                                                        

   is expressed as  
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The approximate Floquet transition matrix is obtained as: 

                                             (  ) 

The transition matrix   is given by the simple matrix multiplication. It gives the connection between 

   and    . The transformation matrix during one period   is: 
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                      (  )                                            

The stability of the system can be determined by using the eigenvalues of the transition matrix   are in modulus less than 

unity, the system is stable, otherwise, it will be unstable 

2.2 2
nd

 Full-Discretization Method 

For the second order the state item  (      ) in  (4) can be approximated by  second-degree Lagrange polynomial by using 

   ,    and      i.e the three boundary values at the time interval ,(   )  (     ) ], 
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Equation (  )  can also be expressed as follows : 
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  ,                               -   (  ) 
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According to (  ), the discrete map can be expressed as 

 

                                              (  ) 

 

The transition matrix   is given by the simple matrix multiplication. It gives the connection between    and    in the form below 

 

                    (  ) 

 

3 APPLICATION OF NUMERICAL SIMULATION OF THE MILLING STABILITY 

General description of (1) is required for numerical simulation which is different from SDOF to two DOF. 

3.1 Single degree of freedom 

The dynamic of a single degree of freedom taking regenerative effect in to consideration (SDOF) milling model can be presented 

according to [19,30, 31] as follow: 

   ̈( )         ̇( )      
  ( )     ( )( (   )   ( )) (  ) 

Where   ( ), is the position of the tool edge at the time instant t     √   ⁄  is the angular natural frequency,     (     )⁄  

is the relative damping,   is the deph of cut,    is the modal mass,  (   ) is the delay term owing to regenerative result and 

  ( ) is dynamic instantaneous uncut chip thickness and presented like that  

  ( )  ∑ 

 

   

.  ( )/    .  ( )/ 0     .  ( )/       .  ( )/1 (  ) 

   and    are the tangential and the normal linearised cutting force coefficients, respectively, and   ( ) is the angular position of 

the jth tooth 

  ( )  (
   

  
)   

(   )  

 
    (  ) 

The function  (  ( )) is a screen function it is equal to 1 if the cutter j is in the cut, and it is equal to 0, if tooth j is out of cut: 
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             ( )    

           
                                                                       (  )  

Were    and    are respectively the start and exit angles of the jth cutter tooth defined as: 

- For down-milling           (    )   ,       ; 

- for Up-milling      ,          (    )  .  

- .     is the radial immersion ratio,   is the radial deph of cut and D is the diameter of the cutter.  

The matrices and the state vector of (1) according to the single degree of freedom are represented as follow : 

  [
    

 

  

  (   )
     

],  ( )  [
  

   ( )  
],  ( )  [

  
  ( )  

]and   ( )  * ( )  ̇( )+  

3.2 Two degree of freedom 

The dynamic equation of a two degree of freedom milling model taking regenerative effect into consideration with a symmetric 

tool is presented as follow according to  

[
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Where   ( ) is the position of the tool edge at the time instant  ,     √     ⁄       √     ⁄  is the angular natural 

frequency,     √     ⁄    (       )⁄ ,    √     ⁄    (       )⁄  is the relative damping,   is the deph of 

cut,    ,     is the modal mass,    ( ),     ( ),     ( ),     ( ) are the cutting force coefficients defined as follow: 

   ( )  ∑ 
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The matrices and the state vector of (1) according to the two DOF are presented as follow : 
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4 STABILITY LOBES DIAGRAMS  

In this study the domain of cutting parameter for mapping stability lobes diagram is set as: the spindle speed ranges from 5000 

rpm to 25000rpm, and the depth of cut w ranges from 0 to 10mm. The reference red line is computed by the first order full 

discretization method with m=500. The radial immersion ratio per cent a/D set as 100%, 75%, 50%, 25%, 10%, 5% respectively 

for down- milling and up- milling. The stability demoted by the green line is compute by the second order full-discretization with 

m=23 and over 200×100 sized grid of parameters. The dynamics parameters are shown in the table 1. The parameters used in all 

numerical computations in this work which are identical with the experimentally determined parameters of [33] are compiled in 

Table 1. Table 1 reflects symmetry of the 2DOF tool for which parameters are the same in the feed and feed normal directions. 

The properties of the laptop computer used for computations are as follows: Processor: intel(R) Celeron(R) CPU1005M@ 

1.90GHz 1.90GHz; Installed Memory (RAM): 4.00 GB (3..88GHz usable); System type: 64-bit operating system. 

Table 1: Dynamics parameters for numerical computational of stability lobes diagrams. 

             

        

             

             

              

    

                  

            

                   

 

  

 Figure.1 stability lobes diagrams up-milling and down-milling SDOF model predicted by the 2nd FDM for full immersion 

ratio per cent (a/D=100%), 
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Figure.2 stability lobes diagrams up-milling and down-milling SDOF model predicted by the 2nd FDM for full immersion 

ratio per cent (a/D=75%), 

  

Figure.3 stability lobes diagrams up-milling and down-milling SDOF model predicted by the 2 
nd

 FDM for full immersion 

ratio per cent (a/D=50%) 

 

Figure.4 stability lobes diagrams up-milling and down-milling SDOF model predicted by the 2nd FDM for full immersion 

ratio per cent (a/D=25%), 
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Figure.5 stability lobes diagrams up-milling and down-milling SDOF model predicted by the 2 

nd
 FDM for full immersion 

ratio per cent (a/D=10%) 

 

  Figure.6 stability lobes diagrams up-milling and down-milling SDOF model predicted by the 2
nd

 FDM for full immersion 

ratio per cent very low immersion(a/D=5%) 

    

Figure.7: A Stability lobes diagrams up-milling and down-milling 2DOF model predicted by the 2nd FDM for full 

immersion ratio per cent (a/D=100%) 
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Figure.8: A Stability lobes diagrams up-milling and down-milling 2DOF model predicted by the 2

nd
 FDM three quarter 

immersion (a/D=75%),  

  

Figure.9: A Stability lobes diagrams up-milling and down-milling 2DOF model predicted by the 2
nd

 FDM for half 

immersion (a/D=50%) 

 

Figure.10: A Stability lobes diagrams up-milling and down-milling 2DOF model predicted by the 2
nd

 FDM for low 

immersion (a/D=10%)   
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Figure.11: A Stability lobes diagrams up-milling and down-milling 2DOF model predicted by the 2
nd

 FDM for low 

immersion (a/D=10%)   

Figure.12: A Stability lobes diagrams up-milling and down-milling 2DOF model predicted by the 2
nd

 FDM for very low 

immersion (a/D=5%) 

The stability lobes diagrams presentd in figures 1 to 12 show that in the general case the immersion ratio is a factor that greatly 

influences the plot of the stability diagram . The curves themselves is the boundary area between the stable domain below the 

curve, i.e. the area where the machining is vibration-free. It corresponds to the zone where the possible torques between the speed 

of rotation of the cutter and the equivalent depth of cut will be chosen without risk of vibration leading to the regenerative effect 

and the unstable zone above the curve, that is to say the risk zone or the choice of the speed of rotation and the depth of cut must 

be avoided, as there is a risk of vibration leading to the very delicate phenomenon without return that the machiner will encounter 

called chatter.  
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Figure 13. Influence of the calculation parameter on the calculation time of the eigenvalues for the SDOF case for up 

milling (green) and down-milling (blue) 

It is seen from figure 1 that for full immersion the stability lobe diagrams obtained for down-milling operation is almost identical 

to that obtained by up-milling for both one degree and two degree of freedom. In general cases the stability lobes diagrams for 

down- milling are much closer to the ideal curves than up- milling for the differnts values of radial immersion ratio.  For three-

quarter immersion, down-milling has a wider zone of general stability than for up- milling. From 5000rpm to 20,000rpm, the 

stability zone is much greater in down-milling than in up-milling. Beyond 20,000rpm the latter will be more profitable. This 

means that for materials so the high speed rotational or spindle speed range above 20,000rpm, up-milling will be more efficient. 

The similar case is observed for the case of half-immersion. The horizontal stability limit has changed from 1mm at 75% to 

0.75mm at 50%. The peak of stability is higher in milling while swallowing for the quarter immersion. The horizontal stability 

limit is greater than 0.5mm in down-milling is less than 0.5mm in up-milling. In the case of quarter immersion for a spindle speed 

greater than 20,000rpm, up-milling will be more efficient than down-milling. For low and very low immersion the stability limit is 

almost equal for up- and down- milling. For values greater than 20,000rpm, the preference is for the up-milling side while 

swallowing given the range of depth of cut that it offers us. Milling is possible for a depth of cut up to a value greater than 4mm 

for up- milling hence its need for cutting speeds greater than 20,000rpm.  

In case of 2DOF, for full immersion ratio figure 7, the stability lobe diagrams obtained for down-milling operation is too identical 

to that obtained by up-milling for two degree of freedom and the stability lobe diagrams for down- milling are much closer to the 

ideal curves than up- milling too for the differents values of radial immersion ratio. For three quarter immersion ratio (figure 8), 

down- milling is much accuracy than up-milling with the same stability domain and the same horizontal stability limit. The pic of 

stability is approximatively the same but the domain of stability of down-milling is larger than up-milling domain. Although half 

immersion ratio figure 9 presented the same limit of stability horizontal for the two cases and down- milling accuracy than up- 

milling the stability domain is approximatively the same. For quarter immersion ratio figure 10, down milling in accuracy than 

up-milling although they have same limit of stability.For low immersion ratio figure 11, and very low immersion ratio figure 12, 

the accuracy of down-milling is better than up milling. The observation in the general case is that the up-milling is less accuracy 

than the down milling for the different values of the immersion ratio except the case of the total immersion. Figure 13 shows how 

the calculation parameter has impact to the calculation time for both up and down milling. Green represents up-milling and blue is 

for down-milling. When the calculation parameter      the calculation time is practically equal for the differents values of 

a/D. For a/D=100% up- milling is better efficient than down- milling when        . The opposite is observed for a/D=10% 

ie up-milling  is less efficient than down-milling. For three quarter immersion ratio per cent, down milling is better efficient than 

up milling when     . For half immersion, quarter immersion and very low immersion the difference is not enough.  
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5 RATE OF CONVERGENCE FOR SDOF 

The convergence rate describes the calculation accuracy of numerical methods i.e. how fast the approximate solution converges to 

the exact one. In Figure 14 and figure 15 the term|| |  |  || is called the convergence rates. It reflects the local errors between 

the absolute value of the maximal critical eigenvalues of the state transition matrix | |, function of computational parameter and 

the exact one |  |. the convergence rates of SDM, 1
st
 FDM and 2

nd
 FDM is presented in figure 14 and figure 15. The radial 

immersion ratio a/D is set as 45% and 10% and for speendle speed            and           speed respectively. the 

convergence of the critical eigenvalues | |, are calculated using various methods with respect to different discretization intervals 

m over one tooth passing period. For reference, is determined by the 1
st
FDM with M=1250. 

The cutting parameters for rate of convergence in Figure 14 are:          ,        ,        and        . In 

general cases the computational precision of SDM is the lowest when      .  As shown in figure 14a. 2
nd

 FDM has the higher 

rate of convergence than 1
st
 FDM and SDM. The computational precision of SDM is the lowest when m <100, though its local 

discretization error is less than that of 1
st 

FDM and 2
nd

FDM. As shown in figure 14.b the computational precision of 2
nd

FDM is 

higher than the two method when     . For      the rate of convergence is the same for 1
st 

FDM and 2
nd

FDM. Though its 

local discretization error is more than that of SDM. In figure 14c. 1
st
 FDM has the higher rate of convergence than SDM and 2

nd
 

FDM. 

 

 
(a)  Convergence rates of the semi-discretization method (blue color) , first order full-discretization method (green color), 

and second order full-discretization method (red color) with axial death of cut            

 (b)  Convergence rates of the semi-discretization method (blue color) , first order full-discretization method (red color), 

and second order full-discretization method (green color) with axial death of cut          

. 
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(c)  Convergence rates of the semi-discretization method (blue color) , first order full-discretization method (red color), 

and second order full-discretization method (green color) with axial death of cut            

Figure 14. Convergence rates of the SDM, 1
st
 FDM, and 2

nd
 FDM the proposed method with the radial immersion ratio 

a/D=45%) 

 

 

 (a) Convergence rates of the semi-discretization method (blue color) , first order full-discretization method (red color), 

and second order full-discretization method (green color) with axial death of cut          

 

(b)  Convergence rates of the semi-discretization method (blue color) , first order full-discretization method (red color), 

and second order full-discretization method (green color) with axial death of cut        
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(c) Convergence rates of the semi-discretization method (blue color), first order full-discretization method (red color), and 

second order full-discretization method ( green color) with axial death of cut          

Figure 15. Convergence rates of the SDM, 1
st
 FDM, and 2

nd
FDM the proposed method with the radial immersion ratio 

a/D=10%)  

In the second case figure 15 the rate of convergence is for a low radial immersion ratio, The cutting parameters use for the case 

are:            ,        ,         and        . The 2
nd

FDM has the best computational precision is higher 

than the two methods when a/D=10%,           ,          and      . In the other way 1
st 

FDM has the best rate of 

convergence.  It is shown in figure 15c that the rate of convergence of 2
nd

FDM is higher than the two others method. 2FDM is 

reliable and accurate for stability prediction only when the approximation parameter m is larger enough (m≥70), while       

1
st
FDM have more . The computational precision of SDM is the lowest when      . 

  

6 CONCLUSION 

A higher order semi-analytical method so-called second order full discretisation method is applyed in solving the chatter stability 

problem for up and down-milling. It is found in this work that the stability chart of SDOF case is generally seen to be had much 

greater stable sub-space than the corresponding 2DOF case. And the radial immersion is a factor that greatly influences the plot of 

the stability lobes diagram. The increase of parameter m leads to increase of time varying. For full immersion up and down 

milling stability lobes are identical but there is little different of computational time, down-milling is efficient. The comparison of 

up and down-milling in case of SDOF based from observation from 5000rpm to 20,000rpm, the stability zone is much greater in 

down-milling than in up-milling. Beyond 20,000rpm the latter will be more profitable. This means that for materials so the high 

speed rotational or spindle speed range above 20,000rpm, up-milling will be more efficient. In general cases of 2DOF a part from 

full immersion which present the same stability lobe diagram for both up- and down-milling, down-milling present better diagram 

of stability than up-milling in term of advantages and accuracy. And the increase in the stability zone is caused by the decrease in 

the immersion ratio. Down milling has computational efficiency than up-milling for both SDOF and 2DOF.  In term of accuracy 

in about all cases down-milling is better than up-milling. 2
nd

FDM has better accuracy for very high calculation parameter.  
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