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ABSTRACT  

Quantum Machine Learning (QML) has advanced significantly thanks to the combination of Quantum 

Computing (QC) with Artificial Intelligence (AI), hence releasing computational benefits over conventional 

methods. This synergy does, however, also bring fresh security flaws like adversarial attacks, quantum noise 

manipulation, and cryptographic weaknesses. This work offers a thorough investigation of QML security 

along with an examination of its special vulnerabilities resulting from hardware-induced faults, quantum 

variational circuits, and quantum data encoding. We methodically investigate adversarial attack techniques 

using the probabilistic character of quantum states including side-channel assaults, quantum noise 

injection, and algorithmic perturbations. We also assess innovative defensive strategies such differential 

privacy, quantum adversarial training, quantum error correction (QEC), cryptographic techniques include 

Quantum Homomorphic Encryption (QHE), We offer a hybrid AI-driven method for protecting QML models 

against developing threats by linking artificial intelligence and quantum security frameworks. This work 

emphasizes the importance of developing quantum-safe AI systems and consistent adversarial robustness 

standards. The results help to advance AI-enhanced quantum security, thereby guaranteeing the future of 

QML applications is efficient, strong, and resistant to adversarial attack. 

Keywords: Adversarial Attacks in QML, Quantum Security Frameworks, Quantum Error Correction 

(QEC), Quantum Machine Learning (QML), Post-Quantum Cryptography (PQC), Quantum Homomorphic 

Encryption (QHE). 

_______________________________________________________________________________________

1. INTRODUCTION  

Recent developments in quantum technology have advanced hardware engineering and algorithm 

development noticeably. By building their own technological stacks, some companies and nations are 

aggressively funding Quantum Computing (QC). Though large-scale, noise-resilient quantum computers 

have great promise to speed calculations across many domains [1, 2], such systems are not likely to be 

accessible right now. Thus, modern studies concentrate on using the features of noisy intermediate-scale 

quantum (NISQ) devices [3]. Among several disciplines, Machine Learning (ML) is generally agreed to be 

one of the first ones that will profit from NISQ devices [4, 5, 6]. Early studies in Quantum Machine 

Learning (QML) have produced new approaches like quantum clustering [4], quantum deep learning [7], 

and quantum reinforcement learning [8]. These advances imply that QML could increase performance in 

ML tasks and raise computing efficiency. But including QC also raises special security issues outside of 

conventional ML weaknesses [9]. Novel attack routes may be able to compromise quantum algorithms and 

hardware, hence specific security frameworks are needed to protect data and computational operations. 
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Research in QML therefore has to consider not just computing efficiency but also the security consequences 

of quantum-enhanced learning models. 

With an eye toward both vulnerabilities and solutions, this overview of the literature addresses security 

issues related to Quantum Machine Learning (QML). The work closely examines security concerns unique 

to QML, including possible attack tactics using quantum data encoding or use of quantum noise and 

vulnerabilities in quantum classifiers running in high-dimensional environments. Given the complexity of 

QML and their potential real-world uses, these security issues are rather important as they underline the 

need of thorough verification methods to maintain both security and computational advantage. Additionally 

discussed in the book are many proactive protective techniques meant to reduce these hazards. Among these 

are adversarial training to boost model resilience against attacks, privacy-preserving methods to guard 

quantum data, stability and dependability of QML models, even hardware noise as a means of augmenting 

the resilience of quantum models rather than seeing it just as a constraint.  

This survey gives academics and industry practitioners a better knowledge of the security scene in QML by 

means of a thorough evaluation of both the vulnerabilities and the related countermeasures.  Development of 

increasingly safe and efficient quantum-based machine learning systems depends on this understanding, 

which guarantees that as quantum computing develops, its uses in ML stay both effective and robust against 

new challenges.. 

The paper is organized as follows: Section 2,3 provides an overview of the basic principles of QC and QML. 

Section 4 presents the approach used for this systematic survey. Section 5 delves into the unique challenges 

of QML models. Section 6 outlines potential defense mechanisms and the inherent resilience of these 

models. Finally, Section 7 offers guidance for practitioners by highlighting potential security gaps in QML 

that warrant future exploration. 

2. QUANTUM COMPUTING   

2.1 Brief History of Computation 

Turing machines establish the boundaries of what is computable by means of stepwise algorithmic 

processes, so modern computational theory is mostly founded on them. Proposed by Alan Turing, the 

Universal Turing Machine (UTM) formalizes the theory that every algorithmic operation may be carried out 

on an adequately strong computing model. [10] 

A. Computability and Complexity Classes 

The Church-Turing thesis holds that a Turing-complete system can run any algorithmically computable 

function. Nonetheless, depending on the resources needed—time and space—computer issues are classified 

as either difficult or simple[11]: 

 P (Polynom Time) problems solvable in polyn time—that is, those involving sorting, matrix 

multiplication.. 

 Problems for which a solution may be confirmed in polynomial time—that is, NP ( nondeterministic 

poisson time—that is, Boolean satisfiability problem, Hamiltonian route). 

 NP-Complete: At least as difficult as any other NP issue, this subset. 

 Bounded-Error Quantum Polynomial Time: Issues easily solved by a quantum computer but may not 

be so easily solvable by a classical computer.. 
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When conventional methods are intractable—that is, when they call for exponential or super-polynomial 

time—quantum computing becomes indispensable. [12]. 

B. Classical vs. Quantum Computation 

All classical computers employ the pragmatic implementation of a UTM called Von Neumann architecture.  

Quantum computers provide a different paradigm, however, using quantum parallelism to speed operations. 

[13]. 

Important quantum computing discoveries include of: 

 Shor’s Algorithm (1994):  

 Classical integer factorization (RSA breaking) is sub-exponential in complexity 

      
 
        . 

 Shor’s algorithm runs in polynomial time O(n
3
), leveraging quantum Fourier transforms for 

periodicity detection. 

 Grover’s Algorithm (1996):  

 Classical unsorted database search requires O(N) operations. 

 Grover’s algorithm reduces this to   √   using quantum amplitude amplification. 

These quantum speedups imply that in domains like cryptanalysis, optimization, and machine learning, 

quantum computing might surpass conventional computing [14]. 

2.2 Principles of Quantum Computing 

While quantum bits (qubits) live in superposition, classical bits are binary—0 or 1: 

∣ψ⟩=α∣0⟩+β∣1⟩ 

where α, β ∈ C satisfy ∣α∣2+∣β∣2=1. A system with n qubits spans a Hilbert space of dimension 2
n
, 

exponentially increasing its representational capacity [15]. 

2.2.1 Superposition and Quantum Parallelism 

The Hadamard gate (H) creates superposition: 

 | ⟩   
 

√ 
 | ⟩  | ⟩  

 | ⟩   
 

√ 
 | ⟩  | ⟩  

Thus, applying Hadamard gates to n qubits produces a uniform superposition of 2
n
 basis states, enabling 

quantum parallelism [16]. 

2.2.2  Entanglement and Nonlocal Correlations 

Quantum entanglement occurs when the quantum state of one particle is correlated with another, irrespective 

of distance. For example, the Bell state [17]: 
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|  ⟩   
 

√ 
 |  ⟩  |  ⟩  

measured in any basis ensures that both qubits collapse into the same state. 

Entanglement enables: 

  Quantum teleportation: sending qubit states without conventional information flow.. 

 Using one entangled qubit, superdense coding sends two classical bits of information. 

2.2.3 Quantum Gates and Unitary Operations 

Quantum computations are performed by applying unitary transformations [18]: 

U
†
U=I 

Examples: 

 Pauli Gates:  

o X∣0⟩=∣1⟩, X|1⟩ ∣0⟩ (NOT gate) 

o Z∣0⟩=∣0⟩, Z∣1⟩=−∣1⟩ (Phase flip) 

 CNOT Gate (Entanglement Generator): CNOT∣00⟩=∣00⟩,CNOT∣10⟩=∣11⟩  

Unitary evolution distinguishes quantum from classical probabilistic models by guarantees that information 

is never lost during computing [19]. 

2.2.4  Measurement and Wavefunction Collapse 

Superposition of a qubit exists before measurement.  Wavefunction collapse in measurement results from: 

P(0) = ∣α∣2,P(1)=∣β∣2 

Post-measurement, the system is irreversibly reduced to either |0⟩ or |1⟩, eliminating quantum superposition 

effects [20]. 

2.3 State-of-the-Art Quantum Computing 

A. Current Hardware Limitations 

Quantum hardware must achieve: 

 Reducing decoherence resulting from environmental interactions results in high-fidelity qubit control 

[21]. 

 Fault tolerance: Quantum error correction requires logical qubits constructed from multiple noisy 

physical qubits [22]. 

 Current architectures: 

 Superconducting Qubits (IBM, Google): Use Josephson junctions, requiring ultra-low temperatures 

(~15mK) [21]. 



International Journal of Engineering Research and Advanced Technology, Vol. 11, No 4, April - 2025  

 

https://ijerat.com                                                                                                                          Page 5 

DOI : 10.31695/IJERAT.2025.4.1 

 Trapped Ions (IonQ, Honeywell): Leverage electromagnetic traps for stable long-lived qubits at 

room temperature [22]. 

 Photonic Qubits: Use quantum optics for non-interacting qubits, suitable for quantum 

communication [23]. 

B. Quantum Supremacy and NISQ Era 

Quantum supremacy was demonstrated by Google’s Sycamore (2019), which solved a random circuit 

sampling problem in 200s, infeasible for classical supercomputers [24]. However, current quantum 

computers operate in the Noisy Intermediate-Scale Quantum (NISQ) era, characterized by [25]: 

 Limited qubit coherence times. 

 High gate error rates. 

 Absence of fault tolerance. 

C. Future Directions: Fault-Tolerant Quantum Computing 

The goal is to achieve error-corrected quantum computation [26]: 

 Surface code error correction requires logical qubits constructed from ~1000 physical qubits. 

 Topological quantum computing (Majorana fermions) aims to achieve hardware-level protection 

against errors. 

 Near-term applications of NISQ devices include [27]: 

 Variational Quantum Eigensolvers (VQE) for quantum chemistry. 

 Quantum Approximate Optimization Algorithm (QAOA) for solving combinatorial problems. 

 Quantum Machine Learning (QML) leveraging entanglement and Hilbert space representations. 

 Quantum computing is not a replacement for classical computing but provides exponential speedups 

for specific problems. The key differences are [28]: 

 Superposition & Entanglement enable massive parallelism. 

 Unitary operations & measurement postulates define computation. 

 Quantum speedup is problem-dependent, as only certain classes (e.g., factoring, search) benefit 

significantly. 

Although ten years away are viable fault-tolerant quantum computers, research on NISQ algorithms, error 

correction, and hardware scaling is fast bringing the science towards usable quantum advantage [29]. 

3. QUANTUM MACHINE LEARNING 

ML promises to be one of the earliest application fields to benefit from early adaptation of QC. Many 

approaches have already been proposed varying from operating on hard datasets consisting of quantum data, 

such as molecular states [30] and phases of matter [31], to quantum-inspired fully-classical approaches [32]. 

In this work, we concentrate on a particular subfield of QML that is sometimes referred to as 

quantumassisted ML. This subfield develops technique to hybridize classical ML with quantum algorithms. 
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In this case, quantum algorithms are often represented as Parametrized Quantum Circuits (PQC) [33] that 

are parameterized by classical parameters, which can be tuned by classical methods during the training 

process. PCQs can be implemented as a stand-alone quantum model, or be a part for a hybrid quantum-

classical architecture which is a preferred approach in the field for implementing more complex and bigger 

QML models [34]. 

3.1 Data encoding feature map 

Fundamental in nature, quantum data encoding transfers conventional data into a Hilbert space of quantum 

states in Quantum Machine Learning (QML).  Like kernel approaches in conventional machine learning, this 

metamorphosis serves as a feature map and directly affects quantum algorithm computing capacity [35].  We 

call the mapping procedure: 

             |    ⟩ 

where classical data x is transformed into a quantum state. The encoding strategies used in QML are crucial 

for efficiently leveraging quantum computing advantages. Two widely used methods are amplitude 

embedding and angle embedding [36]. 

A. Amplitude Embedding 

Amplitude embedding is a logarithmically compact encoding method that maps a 2N-dimensional classical 

input vector into an N-qubit quantum state [37]. The encoded quantum state is given by: 

|    ⟩   ∑      | ⟩

 

 

where the coefficients  i(xi) must satisfy the normalization constraint: 

∑|      |
 

 

   

This encoding exploits the exponential state space of quantum systems, making it particularly suitable for 

high-dimensional data representations. It is often associated with a linear kernel in QML 

B.  Angle Embedding 

Angle embedding utilizes quantum rotations to encode classical values into qubit phase angles [38]. This is 

expressed as: 

    ⟩         | ⟩  

where Rθ(xi) represents a quantum rotation gate parameterized by the classical feature xi. This method is 

hardware-efficient, resembling a cosine kernel, and is commonly used in variational quantum circuits for 

QML tasks. 

3.2  Model Zoo 

By use of Parameterized Quantum Circuits (PQC) for classification and other ML problems, Quantum 

Machine Learning (QML) enhances traditional machine learning (ML) approaches [39].  Following a hybrid 

quantum-classical method, a quantum binary classifier uses classical optimization techniques to modify the 

quantum circuit parameters while the quantum component (PQC) codes and analyzes input. 
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3.2.1  Quantum Binary Classifiers 

A quantum binary classifier consists of a PQC that can process either [40]: 

 Quantum data: Directly obtained from quantum experiments or quantum feature maps. 

 Classical data: Encoded into quantum states before processing. 

The classification process involves: 

1. Quantum State Preparation: Encoding classical features into quantum states using feature maps (e.g., 

amplitude or angle embedding). 

2. Parameterized Quantum Circuit (PQC) Execution: A variational quantum circuit transforms the input 

quantum state. 

3. Measurement:  

 A single-qubit measurement is performed to determine class probability. 

 Alternatively, multiple measurements compute the expectation value of an observable, which 

is then thresholded to classify the input. 

The PQC parameters are optimized using classical gradient-based techniques (e.g., gradient descent with 

backpropagation) to minimize a loss function [41]. 

3.2.2  Quantum Neural Networks (QNNs) 

Inspired by the success of neural networks (NNs) in conventional machine learning, quantum neural 

networks (QNNs) employ layer-wise quantum circuits as its computing units [42]. Although they use 

quantum unitary transformations rather than matrix multiplications, QNNs resemble feedforward neural 

networks (FNNs) and have been shown to have more expressivity than conventional NNs under some 

experimental settings.  

Specialized QNN Architectures [43]: 

1. Quantum Convolutional Neural Networks (Quanvolutional NNs) 

 Inspired by classical CNNs, these architectures leverage quantum feature maps to extract 

hierarchical representations from input data. 

 The convolutional layers use quantum gates instead of matrix multiplications. 

2. Quantum Reinforcement Learning (QRL) 

 Extends classical reinforcement learning (RL) by leveraging quantum circuits for state 

updates. 

 Quantum policies can achieve advantages in exploration due to quantum superposition. 

3. Quantum Generative Adversarial Networks (QGANs) 

 Extends classical GANs, where a quantum generator creates samples and a classical or 

quantum discriminator evaluates them. 
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 Demonstrated applications in quantum chemistry and data synthesis. 

4. Quantum Boltzmann Machines (QBMs) 

 Quantum analog of classical Boltzmann machines, used for unsupervised learning. 

 Encodes probability distributions using quantum Gibbs states. 

5. Quantum Kernel Methods 

 Utilizes quantum feature maps to enhance the performance of support vector machines 

(SVMs) and Gaussian processes. 

 Provides exponential speedup for high-dimensional classification tasks. 

Rapidly growing with fresh designs like Quantum Neural Networks (QNNs), Quantum Convolutional 

Network (QCNs), Quantum GANs (QGANs), and Quantum Kernel Methods is Quantum Machine Learning 

(QML).  These models use quantum parallelism, entanglement, and interference to maybe surpass 

conventional ML in some fields. [44]. 

3.2.3  Hardware noise 

Highly susceptible to hardware noise, quantum computing exposes inadvertent perturbations that 

compromise quantum states and cause computational mistakes [45].  Environmental interactions, quantum 

gate mistakes, manufacturing defects, and control faults cause these mistakes.  Unlike conventional systems 

where mistakes can be fixed with redundancy, quantum systems suffer from decoherence and noise-induced 

state perturbations, so fault tolerance is a great difficulty [46]. 

1. Types of Quantum Noise and Adversarial Errors 

Quantum noise can be categorized into different error channels, which are modeled using quantum 

operations (CPTP maps) [47]: 

1.1 Bit-Flip and Phase-Flip Errors 

These errors are equivalent to applying unwanted Pauli gates: 

 Bit-flip (X) error: Flips the qubit state: X∣0⟩=∣1⟩, X∣1⟩=∣0⟩  

 Phase-flip (Z) error: Inverts the relative phase: Z∣+⟩=∣−⟩, Z∣−⟩=∣+⟩ 

These are modeled as Pauli error channels: 

                 

for bit-flip errors with probability p. 

1.2 Depolarization Noise 

Depolarization transforms a qubit into a maximally mixed state, making all measurement outcomes equally 

probable [48]: 

            
 

  
  

where I is the identity matrix, and p is the depolarization probability. 
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1.3  Decoherence and Loss of Quantum Interference 

Decoherence results from unwanted coupling with the environment, leading to loss of superposition [49]: 

T1:Energy relaxation (spontaneous emission) T2:Dephasing (loss of phase coherence)  

These times, T1 and T2, define the qubit's stability before it collapses. 

1.4  Quantum Gate Errors and Crosstalk 

 Control errors arise from imprecise gate implementations. 

 Crosstalk errors occur when one qubit's operations inadvertently affect another. 

 Measurement errors introduce bias in final state readout. 

1.5   Ion Trap Errors and Environmental Perturbations 

 Shuttle operation noise: In ion-trap quantum computers, ions are physically moved between traps, 

introducing motion-related decoherence. 

 External field disruptions: Stray electromagnetic fields and temperature fluctuations introduce 

unwanted energy shifts, affecting computation. 

2. Adversarial Quantum Noise and Security Risks 

Viewing noise as an adversarial act introduces security threats similar to fault injections in classical ML[50]. 

Adversaries may deliberately introduce errors to: 

 Corrupt computations (e.g., manipulate quantum key distribution). 

 Mislead quantum learning models by introducing structured noise. 

 Introduce hardware backdoors via controlled error injection attacks. 

These threats necessitate robust error mitigation techniques. 

3.2.4  Noise Mitigation Strategies and Error Correction 

Quantum error correction (QEC) is fundamental to overcoming hardware noise [51]. Common methods 

include: 

1. Quantum Error Correcting Codes (QECC) 

 Shor code: Protects against bit-flip and phase-flip errors using redundant encoding: 

∣0⟩→∣000⟩,∣1⟩→∣111⟩  

 Surface codes: Widely used in superconducting qubits for fault-tolerant computing. 

2. Quantum Error Mitigation (QEM) 

 Zero-noise extrapolation (ZNE) estimates and cancels errors post-computation. 

 Dynamical decoupling (DD) uses periodic pulses to counteract environmental noise. 

3. Fault-Tolerant Quantum Computing (FTQC) 

 Requires logical qubits, built from many physical qubits, to correct errors without collapsing 

the quantum state. 



International Journal of Engineering Research and Advanced Technology, Vol. 11, No 4, April - 2025  

 

https://ijerat.com                                                                                                                          Page 10 

DOI : 10.31695/IJERAT.2025.4.1 

Realizing sensible quantum computing still depends on a basic challenge: quantum noise.  Development of 

fault-tolerant quantum systems [52] depends on an awareness of error models, security issues, and error 

correction methods.  Reducing hostile quantum noise is a developing area of study guaranteeing dependable 

and safe quantum processing [53]. 

4. RESEARCH METHODOLOGY 

Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) approach, 

a methodical search was undertaken to guarantee an objective and thorough literature evaluation.  In 

academic research, the PRISMA [54] technique is a methodical strategy intended to minimize selection bias 

and methodically find, filter, and analyse relevant material.. 

     4.1  PRISMA Framework and Methodology 

The PRISMA framework consists of four key stages: 

1. Identification: 

 A broad search of academic databases (e.g., IEEE Xplore, Springer, ACM Digital Library, 

PubMed, arXiv) is conducted to collect relevant studies. 

 Keywords, Boolean logic, and controlled vocabularies (e.g., MeSH terms in biomedical 

studies) are used. 

2. Screening: 

 Duplicates are removed. 

 Titles and abstracts are screened for relevance to the research question. 

3. Eligibility Assessment: 

 Full-text articles are reviewed based on predefined inclusion and exclusion criteria. 

 Bias and methodological rigor are evaluated. 

4. Inclusion: 

 Final studies are selected for qualitative and quantitative analysis. 

This process ensures transparency, reproducibility, and reliability in literature selection. 

4.2  Literature Search Strategy and Execution 

The literature review process was conducted using two search methods, executed sequentially: 

1. Primary Search Method 

 A structured query was applied to peer-reviewed academic databases. 

 Search filters were applied to refine the results based on publication year, relevance, citation 

impact, and peer-review status. 

2. Secondary Search Method 

 A snowballing approach was used, where citations and references from initial studies were 

examined. 
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 This method enhances coverage and retrieval of key foundational papers. 

Figure 1. illustrates the flow of literature selection, depicting PRISMA-based filtering from the initial dataset 

to the final included studies. 

By employing a systematic and multi-stage selection process, the literature review minimizes information 

bias, ensuring an objective synthesis of existing research. 

 

 

 

 

 

 

 

 

 

 

Figure 1:  Documentation of search process [45] 

5. QUANTUM VULNERABILITIES 

Although quantum computing offers fresh computational possibilities, it also creates weaknesses and 

security concerns that have to be addressed [55]. Hardware constraints, noise-induced mistakes, algorithmic 

flaws, and adversarial assaults [56] create these issues. 

     5.1  Hardware-Induced Vulnerabilities 

Hardware defects, which cause major calculation mistakes, essentially limit quantum computing.  

Characterized by short coherence periods, T1 (energy relaxation time) and T2 (dephasing time), 

decoherence and qubit instability is one of the most important difficulties.  These values restrict the depth 

and precision of quantum calculations by defining how long a qubit maintains its quantum state before 

external interactions induce information loss [55, 57].  Quantum gate flaws are yet another main cause of 

mistakes.  Unitary transformations are used in quantum computations, however in practical hardware control 

noise and manufacturing flaws cause gates to not be exactly performed.  Particularly in extended quantum 

circuits, even tiny variations in gate quality cause cumulative mistakes that degrade computational 

dependability. 

Another similar problem is crosstalk mistakes, in which actions on one qubit unwittingly affect another.  

Residual electromagnetic coupling between qubits causes this effect by adding unplanned quantum 

correlations.  In multi-qubit entangled states, where exact control over interactions is required to preserve 

algorithmic correctness [58], crosstalk errors are more troublesome.  Moreover, in quantum readout 

measurement errors provide a major obstacle.  Quantum measurements project the state of a qubit into either 
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∣0⟩ or ∣1⟩, but noise in the measuring process may cause misread results and hence introduce biases in 

probabilistic quantum computing.  These mistakes in detector inefficiencies, thermal noise, and poor sensor 

calibration finally influence quantum algorithms depending on high-precision state estimate.  To increase 

quantum hardware stability, addressing these weaknesses calls for developments in quantum error correction 

(QEC), fault-tolerant quantum designs, and better qubit production methods. 

5.2  Adversarial Quantum Attacks 

Although it offers hitherto unheard-of processing capacity, quantum computing is vulnerable to adversarial 

assaults that might control quantum calculations and jeopardize quantum security. Like fault injection 

attacks in classical systems, one of the main attack points is quantum noise injection. Adversaries may 

purposefully add noise to a quantum system, hence distorting quantum states and producing false computing 

results [55]. In quantum variational algorithms and quantum machine learning models, where minor 

perturbations may produce notable misclassifications [56], this is especially troublesome. 

Quantum side-channel attacks, in which attackers use inadvertent interactions between qubits and their 

surroundings to harvest sensitive data, provide another class of security concerns.  Quantum side-channel 

attacks may use state collapse probabilities, leakage via crosstalk, or indirect qubit interactions to infer 

computational states without directly measuring them unlike conventional side-channel attacks, which 

usually exploit time or power consumption [58].  Targeting especially quantum cryptography systems meant 

to guarantee safe communication, Quantum Key Distribution (QKD) Attacks  Using flaws in single-photon 

sources used in BB84 QKD, the Photon Number Splitting (PNS) Attack lets an eavesdropper intercept 

portion of the quantum key without appreciable disturbance of the quantum states.  The Man-in- the- Middle 

Attack on Quantum Channels is another important weakness wherein an attacker modulates entangled 

quantum states, therefore influencing the quantum communication process and maybe changing encryption 

keys [59].  Future quantum networks have to include quantum cryptographic resilience methods such decoy-

state protocols, quantum error correction, and quantum-resistant authentication systems in order to reduce 

these hazards... 

5.3  Algorithmic Vulnerabilities 

Although they provide computing benefits, quantum algorithms have intrinsic flaws that might be used 

maliciously or advantageously to compromise conventional cryptographic security [60].  In Quantum 

Machine Learning (QML), where adversarial assaults may alter quantum data representations and result in 

misclassifications and biased predictions, one main issue raises itself.  Small perturbations in input data can 

have a major impact on the output of a model in classical machine learning; similarly, adversarial changes to 

quantum states can distort probability amplitudes, so changing computational outcomes in Quantum Neural 

Networks (QNNs) and Variational Quantum Circuits (VQCs).  These perturbations may be deliberately 

engineered to take advantage of flaws in quantum feature mapping and encoding, therefore making QML-

based classifiers unreliable in important uses [61].  Quantum Cryptanalysis, especially using Shor's 

Algorithm, which compromises extensively used public-key cryptography systems as RSA (Rivest-Shamir-

Adleman) and ECC (Elliptic Curve Cryptography), raises more basic mathematical vulnerabilities.  Using 

the Quantum Fourier Transform (QFT) and quantum period-finding, Shor's method factors big numbers in 

polyn time.: 

N=p×q 

where N is a big semiprime integer.  By running in sub-exponential time, the most well-known classical 

methods for integer factorization—General Number Field Sieve (GNFS)—run RSA encryption safe against 
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classical assaults.  But Shor's Algorithm simplifies the complexity to O(n3), making RSA encryption 

breakable once fault-tolerant quantum computers find application.  Analogous vulnerability to quantum 

assaults exists in ECC, which depends on the complexity of the elliptic curve discrete logarithm problem 

(ECDLP).  Post-quantum cryptographic techniques like lattice-based encryption, hash-based signatures, and 

quantum-resistant key exchange protocols are under development to offset quantum computational hazards 

[62]. 

5.4  Countermeasures and Future Security 

Mitigating hardware, algorithmic, and adversarial weaknesses as quantum computing develops calls for a 

mix of fault-tolerant design, error correction, and cryptography breakthroughs. Quantum Error Correction 

(QEC) is the main approach to solve quantum mistakes as it shields quantum calculations from hardware 

noise, decoherence, and gate faults. Unlike conventional error correction, QEC detects and fixes faults 

without collapsing quantum states by use of redundant logical qubit encoding using many physical qubits. 

The most often investigated QEC methods are the Shor Code, which redundantly encodes quantum 

information [63] and the Surface Code, which may fix single-qubit mistakes by encoding a logical qubit into 

a lattice of several physical qubits. 

Post-Quantum Cryptography (PQC), which aims at creating cryptographic systems resistant to quantum 

assaults, is another necessary security precaution. New encryption methods include lattice-based 

cryptography, code-based cryptography, and multivariate poisson cryptosystems are being developed to stay 

safe even against strong quantum adversaries because Shor's Algorithm compromises RSA, ECC, and other 

conventional cryptographic schemes. Fault-tolerant quantum computing (FTQC), which combines QEC with 

logical qubits to execute calculations without building mistakes, guarantees the long-term dependability of 

quantum computations. By use of extensive universal quantum computing, FTQC seeks to guarantee 

consistent operation of quantum algorithms even in the presence of noise [64]. To reduce possible security 

concerns and computational instabilities, achieving secure and scalable quantum computing will need for 

strong hardware optimizations, quantum-safe cryptography frameworks, and quantum control method 

developments. 

 

 

 

 

 

 

 

 

 

Figure 2: A Taxonomy map outlining the main QML vulnerabilities. 
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6. QUANTUM DEFENCES 

Adversarial attacks may violate model integrity, distort quantum computations, and leak important quantum 

states [65]. Quantum Machine Learning (QML) models are so vulnerable. Strong quantum encoding, 

adversarial training, quantum error correction, and cryptographic protections taken together define effective 

defenses against such assaults. 

6.1  Robust Quantum Data Encoding 

Strong quantum feature encoding methods that maintain data integrity and reduce vulnerability to adversary 

alterations define resilience to adversarial perturbations in Quantum Machine Learning (QML). Underlying 

QML models, quantum feature encoding maps classical data into quantum states in a Hilbert space. By 

adding redundancy, encoding techniques as Amplitude Embedding and Angle Encoding may be altered to 

make QML models less vulnerable to perturbations in quantum state preparation [66]. These changes 

guarantee that small changes in input data have no appreciable effect on the final quantum state, hence 

strengthening resilience. 

Defensive encoding—error-detecting embeddings that translate classical data into a higher-dimensional 

Hilbert space—is one efficient security method. Adversarial perturbations lose their efficacy by raising the 

dimensionality of the feature space as they must induce many more distortions to control the encoded 

quantum state. This method guarantees structural integrity of the quantum representation even under hostile 

intervention. Quantum feature smoothing—which uses quantum noise-resistant operations to quantum 

states—is another way to increase resilience. These changes provide a buffer against minor perturbations, 

hence lowering the susceptibility of quantum models to adversarial noise. This idea is similar to adversarial 

training in conventional neural networks, wherein models are taught with noisy or disturbed inputs to boost 

their resistance [67]. Combining these methods helps QML models to grow naturally more resistant to 

adversarial assaults, hence guaranteeing improved stability and security in quantum computing. 

6.2  Adversarial Training in QML 

Extensive use of adversarial training, a well-known defensive mechanism in classical machine learning, to 

Quantum Machine Learning (QML) strengthens model resilience against quantum adversarial assaults. This 

method trains quantum models on both clean and adversarially disturbed quantum states, therefore allowing 

them to generalize better and withstand hostile perturbations. This approach is especially successful in 

Parameterized Quantum Circuits (PQCs), in which adversary inputs may control the quantum state 

development, hence producing erroneous computations or wrong classifications [68]. Variational circuit 

robustness—training PQCs on a hybrid dataset including both clean and adversarially disturbed quantum 

states—is a fundamental component of adversarial training in QML. The quantum circuit learns to 

discriminate between natural and adversarially changed quantum data by exposing the model to these 

modified states during training, hence reducing its sensitivity to minor perturbations. This method 

guarantees that adversarial changes have no appreciable effect on computing results, hence enhancing the 

stability of quantum variational methods. 

Adaptive Noise Injection is another useful protection strategy wherein tiny randomized quantum 

disturbances are purposefully injected during training. This approach forces the model to develop robust 

quantum representations that are less sensitive to small adversarial fluctuations, hence preventing overfitting 

to adversarial cases. By efficiently smoothing the loss landscape of QML models, adaptive noise injection 

lowers their susceptibility to adversarial optimization strategies that take use of abrupt decision boundaries 
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in quantum feature space [69]. These methods taken together support the security and resilience of QML 

models in hostile settings. 

6.3  Quantum Error Correction (QEC) for Model Integrity 

Often using hardware noise and qubit instability, quantum adversarial assaults cause incorrect calculations in 

Quantum Machine Learning (QML) models. Protection of quantum computations against these adversarially 

generated quantum disturbances depends critically on quantum error correction (QEC), hence guaranteeing 

the dependability and stability of quantum circuits. Any hostile interference, including bit-flip errors, phase-

flip errors, or decoherence effects, may greatly reduce model performance as QML models depend on 

coherent quantum states for processing. Maintaining quantum model integrity [70] depends on using error 

correcting techniques. 

Surface codes and stabilizer codes—which guard quantum states against bit-flip and phase-flip errors—are 

among the most powerful QEC methods available. Surface codes distribute quantum information repeatedly 

to discover and fix faults by encoding logical qubits into a vast network of physical qubits. These algorithms 

help QML models to be robust to minor adversarial perturbations, hence preventing attackers from adding 

modest quantum noise to control computational results [71]. Apart from error-correcting codes, fault-

tolerant variational quantum circuits (VQCs) improve the resilience of QML by use of logical qubits 

resistant to adversarial noise. Error-corrected quantum gates used in these fault-tolerant circuits help to 

decrease the spread of adversarial perturbations across the computation. Designing QML models with built-

in QEC methods helps to greatly reduce adversarial changes to quantum computations, hence guaranteeing 

consistent and safe execution of quantum learning algorithms even in the face of deliberate or ambient noise 

[72]. 

6.4  Cryptographic Defences and Quantum Secure Learning 

In Quantum Machine Learning (QML), security calls for cryptographic protections guarding against model 

manipulation, adversarial quantum computations, and data leaks. Unlike classical models, QML systems 

depend on quantum superposition, entanglement, and probabilistic measurement, so they are susceptible to 

assaults via quantum information leakage or computational process manipulation. Secure learning systems 

have to be included into QML systems if we are to mitigate these hazards thus guaranteeing data 

confidentiality, model integrity, and resistance to hostile intervention [73]. Quantum homomorphic 

encryption (QHE), which enables quantum computations on encrypted quantum states without disclosing the 

underlying data, is among the most exciting cryptographic techniques available. This lets QML models 

handle encrypted inputs, therefore preventing attackers from deducing model parameters, quantum states, or 

training data. Unlike conventional homomorphic encryption, which suffers from computational 

inefficiencies, QHE runs within a quantum computational framework using quantum mechanics to provide 

effective secure computing [74]. Sensitive quantum data stays completely safeguarded by implementing 

QHE even on possibly untrustworthy quantum hardware. 

The use of Quantum Authentication Protocols is yet another essential security feature. These protocols 

ensure that the predictions and computations made by QML models are accurate and trustworthy. 

Verification of the outcomes of quantum inference may be accomplished via the use of techniques such as 

quantum digital signatures. This ensures that attackers are unable to manipulate the outputs of the model or 

introduce alterations that are not approved [75]. Quantum machine learning (QML) models are able to 

develop resistance against model hijacking, illegal quantum access, and hostile data manipulations via the 

incorporation of cryptographic verification methods. This helps to ensure that quantum-based learning 

systems are both legitimate and private. 
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6.5  Quantum Adversarial Detection and Countermeasures 

Maintaining the integrity of Quantum Machine Learning (QML) models depends critically on the 

identification and neutralization of adversarial perturbations in Quantum Neural Networks (QNNs) and 

Variational Quantum Circuits (VQCs). Quantum adversarial attacks may change quantum states, change 

circuit parameters, or use quantum noise to decrease model performance unlike conventional adversarial 

attacks, which change input data. Sophisticated quantum adversarial detection and mitigating methods must 

be used to protect QML models against such attacks [76]. Quantum Fisher Information Analysis is one 

efficient method because it quantifies sensitivity in quantum parameter environments to identify hostile 

changes. A useful instrument for determining perturbed quantum states, the Quantum Fisher Information 

Matrix (QFIM) describes how little variations in quantum states influence measuring probabilities. The 

QFIM response differs greatly when an adversarial assault generates non-physical disturbances, therefore 

indicating the existence of hostile interference [77]. Through ongoing observation of these fluctuations, 

QML models can dynamically identify and adjust to adversarial perturbations. 

Entanglement-Based Anomaly Detection is another sophisticated technique based on entanglement entropy 

that finds hostile interference in multi-qubit quantum systems. Quantum entanglement reflects the natural 

structure of quantum computing and follows predictable trends in well-structured QML models. Malicious 

changes introduced by an opponent cause the entanglement entropy to differ from predicted values, 

suggesting non-physical disturbances [78]. Monitoring entanglement features helps QML models to 

independently detect, flag, and reduce adversarial impact, hence guaranteeing strong and safe quantum 

learning. 

 

 

 

 

 

 

 

 

Figure 3:  Diagram for Taxonomy of Defences Against Adversarial Attacks in Quantum Machine 

Learning (QML) 

6.6  Discussion & Future Directions in QML Security 

The study of vulnerabilities and defences in Quantum Machine Learning (QML) is a vital and developing 

field of research needing creative solutions to improve model security and robustness. The possible attack 

routes follow in line with the increasing sophistication of QML models, therefore a thorough knowledge of 

both quantum system design and its sensitivity to adversarial manipulation [79] is essential. The 

development of novel attack routes—especially via fault injections and intentional manipulation of quantum 

noise—particularly raises urgent issues. These adversarial techniques reduce computing accuracy by 

leveraging noise-induced decoherence, qubit instability, and cross-talk effects, hence exploiting the intrinsic 

Defenses QML  

1.Robust Quantum 
Data Encoding 

oDefensive Encoding 

oQuantum Feature 
Smoothing 

1.Adversarial Training 
in QML 

oVariational Circuit 
Robustness 

Adaptive Noise 
Injection 

Quantum Error 
Correction (QEC) 

Surface Codes & 
Stabilizer Codes 

Fault-Tolerant 
Variational Quantum 

Circuits 

Cryptographic 
Defenses & Secure 

Learning 

Quantum 
Homomorphic 

Encryption (QHE) 

Quantum 
Authentication 

Protocols 

Quantum Adversarial 
Detection & 

Countermeasures 

Quantum Fisher 
Information Analysis 

Entanglement-Based 
Anomaly Detection 



International Journal of Engineering Research and Advanced Technology, Vol. 11, No 4, April - 2025  

 

https://ijerat.com                                                                                                                          Page 17 

DOI : 10.31695/IJERAT.2025.4.1 

fragility of quantum systems. The difficulty grows when quantum systems expand as the growth of Hilbert 

spaces raises the sensitivity of the model to disturbances [80]. Achieving quantum advantage while 

guaranteeing security and stability emphasizes the critical requirement of strong verification techniques that 

can effectively adapt to the complexity of big-scale quantum computing by means of a careful balancing. 

Defence-wise, improving QML security calls for major developments in formal verification methods, 

differential privacy, and adversarial training. Although conventional adversarial training has been modified 

for quantum models, the special probabilistic character of quantum states calls for further improvement to 

address quantum-specific hazards. A fundamental idea in classical machine learning, differential privacy is 

still in its early phases of adaption to quantum contexts and needs careful investigation to create efficient 

quantum-safe implementations [81]. Furthermore offering interesting routes for mathematically exact 

defenses against quantum adversarial assaults are mathematical integer linear programming (MILP) 

verification and Lipschitz continuity analysis. Still under development in the quantum world, these 

techniques need further work before they become generally useful and efficient in protecting QML models 

[82]. Cross-disciplinary research has a bright future because hybrid defensive mechanisms combining 

classical and quantum security measures may provide a multi-layered security framework against adversarial 

attacks. Combining strong optimization systems, quantum-specific countermeasures, and conventional 

cryptography methods could provide creative ideas with more robustness. But first empirical research and 

benchmarking systems have to be developed if we are to fairly assess these strategies. Assessing the efficacy 

of suggested security solutions under real-world situations [83] depends on standardized datasets, attack 

scenarios, and assessment criteria unique to QML vulnerabilities and countermeasures. 

All things considered, the direction of QML security research calls for a multidisciplinary approach 

combining ideas from machine learning (ML) and quantum computing (QC) to create models not only 

computationally strong but also safe against adversarial assaults. The research community can propel major 

progress toward guaranteeing the security, resilience, and practical deployment of QML systems by tackling 

these fundamental challenges—ranging from novel attack routes to the refining of defensive techniques and 

the introduction of empirical benchmarks. 

7. CONCLUSION 

Before they may be reasonably used in useful applications, quantum machine learning (QML) models 

present special security issues that have to be resolved. Quantum systems' basic characteristics—

entanglement, superposition, probabilistic measurement—make them essentially distinct from conventional 

models and provide fresh attack surfaces that enemies may use. A hostile actor may subtly and difficultly 

attack the architectural integrity of a QML model, modify the intrinsic quantum noise, or use hardware-

induced vulnerabilities. Although numerous defensive mechanisms have been suggested in the literature, 

their practical relevance and dependability require further empirical confirmation, especially in the 

framework of big-scale quantum systems. 

Notwithstanding these security issues, QML models show natural resistance against several traditional 

attack paths. Several elements contribute to this resilience. First of all, the effective adaption of classical and 

quantum adversarial training approaches has reinforced QML models against perturbations in quantum 

feature space. Second, some quantum architectures—such as quanvolutional networks and quantum-

enhanced Restricted Boltzmann Machines (RBMs)—have been found to show structural robustness against 

adversarial modifications, so reducing their sensitivity to attacks relative to conventional deep learning 

models. Furthermore investigated as a technique of improving differential privacy is the use of device-

induced noise, thereby using the natural stochastic character of quantum measurements to hide sensitive data 
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from adversary inference. Ultimately, QML reduces prevalent hazard in traditional deep learning, gradient 

inversion attacks, by means of designs that naturally safeguard sensitive data and hence stop attackers from 

recreating input information from gradient-based optimization processes. 

The merger of Quantum Computing (QC) and Machine Learning (ML) technologies will ultimately 

determine the direction of QML security research as it promotes a multidisciplinary approach investigating 

hybrid defensive tactics. This calls for thorough empirical research, the creation of fresh benchmarking 

systems, and the creation of standardized datasets and assessment criteria especially fit to QML security 

concerns. By tackling these difficulties, scientists might endeavor to create QML models that are not only 

computationally efficient and strong but also safe and robust against a broad spectrum of adversarial threats. 
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