

International Journal of Engineering Research and Advanced Technology (IJERAT)

DOI: 10.31695/IJERAT.2019.3434

Factors Causing Overbudget for Roof Cover Work in the Construction of High-rise Buildings

Rizki Andriani¹ and Budi Susetyo²

¹Departement Master Program of Civil Engineering Mercu Buana University Jakarta Indonesia ²Departement Master Program of Civil Engineering Mercu Buana University Jakarta Indonesia

ABSTRACT

The development of building construction in Indonesia is experiencing rapid development. In 2018, the total construction projects are predicted to increase by 3% compared to 2017. The concept of building high-rise buildings now uses the concept of green building. Where in the use of materials must be according to the approval of a green building consultant. This study uses roof covering material with solar panels, using these materials project planning becomes overbudget. Overbudget that occurs when planning with the green building concept is 15% of the initial contract. Therefore, the researcher will discuss the factors that influence the cost efficiency of the roof cover work of high-rise buildings. Processing data using SPSS tools (Statistical Package for Social Sciences). From this data processor with SPSS, there were 10 factors that caused the overbudget of roof cover work on the construction of high-rise buildings using wrong estimation techniques, complicated development requirements, inadequate project funding, not taking into account unexpected costs, inaccurate estimation of costs, data and incomplete project information, material selection according to work drawings, owner changes to design changes when construction is underway, lack of coordination between construction manager - planner and estimated cost of building high-rise buildings. For this reason, look for factors that cause roof cover work in the construction of high-rise buildings.

Key Words: Key Success Factors, Overbudget, Solar Panels, High-rise Buildings.

1. INTRODUCTION

Multi-storey buildings are buildings that have more than one floor vertically. This study will discuss roof cover work in high-rise academic buildings. The roof is a part of a building that functions as a cover for all the rooms below. The roof is also a crown that has a function to add beauty and to protect buildings from heat and rain. In the current development, roof cover material is increasingly developing roof cover using solar panels. Solar panels are technologies that function to convert or convert solar radiation into electrical energy directly. There are 2 types of solar panels, namely solar panels using batteries and not using batteries.

2. ESTIMATED COSTS

Cost estimation is the process of estimating the relationship between costs and the effect of these costs. Estimated cost is divided estimation of direct costs and estimates of indirect costs. Estimated direct costs are calculated based on the multiplication of bid unit prices with the volume of work referring to the drawings and technical specifications, while the estimated indirect costs are not easy because there is no accurate reference of information as well as the drawings and technical specifications [1], According to [2], cost estimation is an iterative process of developing estimates of the monetary resources needed to complete project activities. According to [3] estimated costs are areas of engineering activities where experience and technical considerations are used in applying science especially the problem of estimating costs and controlling costs [4]

3. EFFICIENT COSTS

Cost efficiency is a strategic choice used by many companies, especially companies engaged in construction. Efficient costs on construction projects are usually carried out in material selection where using material with the same function is used material at a cheaper price and still in the required standard specifications. Efficient project costs are usually controlled by the project manager, cost control and Quantity Surveyor. For this reason, material selection definitely requires approval from that party.

4. PROJECT OVERBUDGET

Freezing costs is the construction cost of a project which, during the implementation phase, exceeds (budget) the project budget set at the beginning (estimated cost), thus causing significant losses to the contractor [5]. Project overbudget occurs in a construction project can be caused by internal parties or external parties from the construction project itself. The cost swelling itself is divided into three parts, namely: 1. Freezing costs in the initial stages of construction, 2. Freezing costs during the construction project process, and Freezing post-construction costs. Therefore, in this study we will discuss the factors that influence the overbudget of construction projects.

5. RESEARCH METHOD

According to research methods [6] is basically a scientific way to get valid data with objectives that are discovery, proof and development of a knowledge so that the results can be used to understand, solve and anticipate problems. The flow in this study is:

Figure 1. Research Flow

From the research method above, it can be concluded that the flow of this study uses successful key factors obtained from reference to journals, books or e-books. The results of the key success factors can be done by analyzing the data which then can draw conclusions from the efficiency and effectiveness in terms of costs that can improve the project's overbudget.

6. IDENTIFICATION OF VARIABLES

This study has 3 independent variables and 1 dependent variable for processing and analyzing the results of factors in roofing work of high-rise buildings, variables can be in the form of theory or object of research [7]. These variables are:

- Dependent Variabel : 1. Overbudget (X1)
 - 2. Design of high-rise building (X2)
 - 3. Roof cover work (X3)
- Independent Variabel : Cost performance (Y1)

Variable identification is obtained from the key success factors obtained from journals, books, e-books and other references

www.ijerat.com

respondents obtained from this study were 52 respondents. Determination of the number of respondents using the Slovin method. Where to use the target population, the target population is the number of respondents according to the project organizational structure. The following are influential factors:

NO	MAIN FACTOR		MAIN FACTOR SUBFACTOR KEY SUCCESS FACTOR						
1	X1-1			Use the wrong estimation technique					
2		X1-2		Complex development requirements					
3		X1-3		Inaccurate estimated costs					
4		X1-4		Project data and information are incomplete					
5		X1-5		Lack of coordination between contractor					
6	X1-6			Construction manager planners Design drawings and working drawings					
7		X1 0		Labor productivity					
7	X1	A1-7	OVERBUDGET	Poor cost control in the field					
8		X1-8							
9		X1-9		High equipment prices / rental					
10		X1-10		Error managing equipment storage					
11		X1-11		Lack of construction materials					
12		X1-12		Unhealthy competition					
13	X1-13 X1-14 X1-15			Too many projects are handled at the same time					
14				Consultants are less able to supervise the project					
15				Poor quality control					
16		X1-16	•	There is an increase in material prices					
17		X2-1		Classification of High-rise Buildings					
18		X2-2	•	Design and Planning of High-rise Buildings					
19		X2-3	HICH I EVEL	Control of High-rise Buildings					
20		X2-4	BUILDING	Operations and Activities of High-rise Buildings					
21	X2	X2-5	DESIGN	Team Performance of High-rise Buildings					
22	X2-5 X2-6 X2-7		•	Project Optimization					
23			X2-0 X2-7			Estimated Cost of Building High-rise Buildings			
24		X2-8		Installation Process and Work Technique					
25		X3-1		Design drawings					
26		X3-2		Material Selection In Accordance With Working Pictures					
27		X3-3	DOOD	Conformity and Clarity of Specifications					
28		X3-4	KUUF CLOSINC	Availability of Material Stock					
29	X3	X3-5	WORK	Roofing Materials and their Applications in Building Construction					
30		X3-6	•	Expertise and Experience in Work					
31		X3-7		Accuracy (Determination) and Measurement					
32		X3-8		Aesthetic and Appearance Considerations					
33		X3-9		Material Costs and Equipment used					
54 25		Y 1-1 V1-2		Inadequate project funding					
55		¥ 1-2		Does not take into account unexpected costs					
36	Y1	Y1-3	COST	construction was running					
37		Y1-4		Planning is not competent					
38		Y1-5	1	iscommunication in design planning					

]	Table 1.	Factors	that	Influence	Overbuc	lget R	oof (Cover	Wo	rk
--	---	----------	---------	------	-----------	---------	--------	-------	-------	----	----

7. PROCESSING STAGE

The research method determines how a research process is carried out from data collection, processing data into information to be analyzed and finally producing findings that can be drawn conclusions. The steps in this study are as follows: 1. Deciphering the background, 2. Identifying the problem, 3 Arranging the theoretical foundation, 4. Determining the research variables, 5. Choosing research instruments, 6. Determining the subject of research, 7. Collecting data, 8. Processing data and 9. Writing research report. [8]

In its own validity test [9] a measure that can show the validity or validity of the instrument. So in testing the validity it refers to an instrument in carrying out its functions. Variables obtained from journals, e-books, and books that can be published. The process of testing the validity and reliability is carried out using the tools in the SPSS program as follows: data processing flow:

8. DETERMINATION OF THE NUMBER OF RESPONDENTS

This study uses a target population type, where questionnaires will be distributed to people directly involved in the construction of the high-rise building. Determination of the number of respondents using Slovin formula. the number of targer population is N = 60 people. The following is the number of samples using the Slovin method:

$$n = \frac{N}{N \times d^{2} + 1}$$

$$n = \frac{60}{60 \times 0.05^{2} + 1} = 52,17 \sim 52$$
 Respondents
So, in this study there were 52 number of respondents.

9. VALIDITY AND RELIABILITY TEST

Judging from the value of corrected item total correlation if the value is more than 0.300, it can be stated Relatively and the value of Cronbach's Alpha (Calculated Validity).

r	1	Table 2. Relia	ability Test and Val	idity Test X1		1
	RELIABILITY	RELIABILITY	RELIABLE/NON	VALUE OF	STANDARD	
VARIABLE X1	CALCULATED	STANDARD		VALIDITY	VALIDITY	
	VALUE	VALUE	RELIADLE	COUNT	VALUE	VALID
X1-1	0,619	0,300	RELIABEL	0,898	0,600	VALID
	RELIABILITY	RELIABILITY		VALUE OF	STANDARD	
VARIABLE X1	CALCULATED	STANDARD		VALIDITY	VALIDITY	
	VALUE	VALUE	KELIADLE	COUNT	VALUE	VALID
X1-2	0,289	0,300	NON RELIABEL	0,910	0,600	VALID
X1-3	0,554	0,300	RELIABEL	0,900	0,600	VALID
X1-4	0,496	0,300	RELIABEL	0,902	0,600	VALID
X1-5	0,454	0,300	RELIABEL	0,903	0,600	VALID
X1-6	0,434	0,300	RELIABEL	0,904	0,600	VALID
X1-7	0,388	0,300	RELIABEL	0,905	0,600	VALID
X1-8	0,425	0,300	RELIABEL	0,904	0,600	VALID
X1-9	0,727	0,300	RELIABEL	0,894	0,600	VALID
X1-10	0,671	0,300	RELIABEL	0,896	0,600	VALID
X1-11	0,701	0,300	RELIABEL	0,895	0,600	VALID
X1-12	0,639	0,300	RELIABEL	0,897	0,600	VALID
X1-13	0,842	0,300	RELIABEL	0,890	0,600	VALID
X1-14	0,715	0,300	RELIABEL	0,895	0,600	VALID
X1-15	0,644	0,300	RELIABEL	0,897	0,600	VALID
X1-16	0,700	0,300	RELIABEL	0,895	0,600	VALID

From table 2. Test reliability and validity test can be concluded for the count reliability test more than 0.300 then the results are reliable and if the test validity count is more than 600 then the result is valid

VARIABLE X2	RELIABILITY CALCULATED VALUE	RELIABILITY STANDARD VALUE	RELIABLE/NON RELIABLE	VALUE OF VALIDITY COUNT	STANDARD VALIDITY VALUE	VALID/NON VALID
X2-1	0,528	0,300	RELIABEL	0,823	0,600	VALID
X2-2	0,580	0,300	RELIABEL	0,816	0,600	VALID
X2-3	0,810	0,300	RELIABEL	0,783	0,600	VALID
X2-4	0,440	0,300	RELIABEL	0,834	0,600	VALID
X2-5	0,530	0,300	RELIABEL	0,823	0,600	VALID
X2-6	0,544	0,300	RELIABEL	0,821	0,600	VALID
X2-7	0,690	0,300	RELIABEL	0,804	0,600	VALID
X2-8	0,439	0,300	RELIABEL	0,834	0,600	VALID

From table 3. Test reliability and validity test can be concluded for the count reliability test more than 0.300 then the results are reliable and if the test validity count is more than 600 then the result is valid

VARIABLE X3	RELIABILITY CALCULATED VALUE	RELIABILITY STANDARD VALUE	RELIABLE/NON RELIABLE	VALUE OF VALIDITY COUNT	STANDARD VALIDITY VALUE	VALID/NON VALID
X3-1	0,307	0,300	RELIABEL	0,7296	0,600	VALID
X3-2	0,241	0,300	NON RELIBEL	0,7381	0,600	VALID
X3-3	0,487	0,300	RELIABEL	0,6986	0,600	VALID
X3-4	-0,013	0,300	NON RELIBEL	0,7731	0,600	VALID
X3-5	0,452	0,300	RELIABEL	0,7051	0,600	VALID
X3-6	0,617	0,300	RELIABEL	0,6740	0,600	VALID
X3-7	0,169	0,300	NON RELIBEL	0,7528	0,600	VALID
X3-8	0,715	0,300	RELIABEL	0,6556	0,600	VALID
X3-9	0,758	0,300	RELIABEL	0,6448	0,600	VALID

Table 4. Test Reliability and Validity Test X3

From table 4. Test reliability and validity test can be concluded for the count reliability test of more than 0.300 then the results are reliable and if the test validity count is more than 600 then the result is valid

Table 5. Reliability and Validity Test Y1

VARIABLE Y1	RELIABILITY CALCULATED VALUE	RELIABILITY STANDARD VALUE	RELIABLE/NON RELIABLE	VALUE OF VALIDITY COUNT	STANDARD VALIDITY VALUE	VALID/NON VALID
Y1-1	0,414	0,300	RELIABEL	0,639	0,600	VALID
Y1-2	0,206	0,300	RELIABEL	0,711	0,600	VALID
Y1-3	0,427	0,300	RELIABEL	0,632	0,600	VALID
Y1-4	0,634	0,300	RELIABEL	0,524	0,600	VALID
Y1-5	0,497	0,300	RELIABEL	0,600	0,600	VALID

After obtaining a variable that is declared to be reliable and valid, the variable will then be analyzed by looking for the Mean value of each variable in the questionnaire.

							King K	Courto					
RANK	MAIN	SUB	ITEM KSF	RECA	PITULAT	ION OF C	QUESTIO		AMOUNT OF	w	S	R	INDEX RII
	FACIO	FACIOR		1	2	3	4	5	RESPONDENTS				1
1	I	X1-1	Use the wrong estimation technique	0	0	19	19	14	52	203	5	52	0,781
2	I	X1-2	Complex development requirements	0	0	20	19	13	52	201	5	52	0,773
3	IV	Y1-1	Inadequate project funding	0	0	21	18	13	52	200	5	52	0,769
4	IV	Y1-2	Does not take into account unexpected costs	0	0	21	19	12	52	199	5	52	0,765
5	I	X1-3	Inaccurate estimated costs	0	0	22	18	12	52	198	5	52	0,762
6	I	X1-4	Project data and information are incomplete	0	0	23	17	12	52	197	5	52	0,758
7	ш	X3-2	Material Selection In Accordance With Working Pictures	0	0	24	16	12	52	196	5	52	0,754
8	IV	Y1-3	The owner made a design change when the construction was running	0	1	23	16	12	52	195	5	52	0,750
9	I	X1-5	Lack of coordination between contractor construction manager planners	0	1	24	15	12	52	194	5	52	0,746
10	П	X2-7	Estimated Cost of Construction of High-rise Buildings	0	1	25	14	12	52	193	5	52	0,742
11	I	X1-6	Design drawings and working drawings	0	2	24	14	12	52	192	5	52	0,738
12		X3-4	Availability of Material Stock	0	2	25	13	12	52	191	5	52	0,735
13	11	X2-1	Classification of High-rise Buildings	0	2	25	14	11	52	190	5	52	0,731
14	I	X1-7	Labor productivity	0	2	26	13	11	52	189	5	52	0,727
15	II	X2-2	Design and Planning of High-rise Buildings	0	2	27	12	11	52	188	5	52	0,723
16	ш	X3-1	Design drawings	0	2	28	11	11	52	187	5	52	0,719
17	I	X1-8	Poor cost control in the field	0	3	27	11	11	52	186	5	52	0,715
18	I	X1-11	Lack of construction materials	0	3	28	10	11	52	185	5	52	0,712
19	111	X3-5	Roofing Materials and their Applications in Building Construction	0	4	27	10	11	52	184	5	52	0,708
20	ш	X3-7	Accuracy (Determination) and Measurement	0	4	28	10	10	52	182	5	52	0,700

Table 6. Questionnaire Ranking Results

DANK	MAIN	SUB		RECA	PITULAT	ION OF (QUESTIO	NARY	AMOUNT OF	M	c	D	
DAIN	FACTO	FACTOR		1	2	3	4	5	RESPONDENTS	vv	3	n	
21	Ш	X3-3	Conformity and Clarity of Specifications	0	4	29	9	10	52	181	5	52	0,696
22	II	X2-4	Operations and Activities of High- rise Buildings	0	4	29	10	9	52	180	5	52	0,692
23	II	X2-6	Project Optimization	0	5	29	8	10	52	179	5	52	0,688
24	Т	X1-12	Unhealthy competition	0	5	29	9	9	52	178	5	52	0,685
25	Ш	X3-9	Material Costs and Equipment used	0	5	30	8	9	52	177	5	52	0,681
26	Ш	X3-8	Aesthetic and Appearance Considerations	0	5	30	9	8	52	176	5	52	0,677
27	Ι	X1-13	Too many projects are handled at the same time	0	6	29	9	8	52	175	5	52	0,673
28	Ι	X1-14	Consultants are less able to supervise the project	0	6	30	8	8	52	174	5	52	0,669
29	=	X2-3	Control of High-rise Buildings	0	6	31	7	8	52	173	5	52	0,665
30	=	X2-5	Team Performance of High-rise Buildings	0	7	30	7	8	52	172	5	52	0,662
31	Ι	X1-15	Poor quality control	0	7	30	8	7	52	171	5	52	0,658
32	IV	Y1-4	Planning is not competent	0	7	31	7	7	52	170	5	52	0,654
33	IV	Y1-5	Miscommunication in design planning	0	8	30	7	7	52	169	5	52	0,650
34	Ξ	X3-6	Expertise and Experience in Work	0	8	31	6	7	52	168	5	52	0,646
35	II	X2-8	Installation Process and Work Technique	0	8	31	7	6	52	167	5	52	0,642
36	I	X1-16	There is an increase in material prices	0	9	30	7	6	52	166	5	52	0,638
37	I	X1-9	High equipment prices / rental	1	9	29	6	7	52	165	5	52	0,635
38	I	X1-10	Error managing equipment storage	1	9	29	7	6	52	164	5	52	0,631

10. CONCLUSION

From the processing of SPSS data, it can be concluded that 10 work items are the factors that cause the overbudget of roof cover work in high-rise buildings:[10]

- 1. Using the wrong estimation technique
- 2. Complex development requirements
- 3. Inadequate project funding
- 4. Does not take into account unexpected costs
- 5. Inaccurate estimated costs
- 6. Project data and information are incomplete
- 7. Material selection according to the work picture
- 8. The owner made a design change when the construction was running
- 9. Lack of coordination between the construction-manager planner
- 10. Estimated cost of building a high-rise building

REFERANCE

[1] Phaobunjong, K. (2002). Parametric Cost Estimating Model for Conceptual Cost Estimating of Building Construction

www.ijerat.com

Projects. Dissertation, 408. Retrieved from https://repositories.lib.utexas.edu/handle/2152/845

- Schaufelberger, J. E., & Holm, L. (2018). Cost estimating. In Management of Construction Projects. https://doi.org/10.4324/9781315529097-3
- [3] AACE International Reccomended Practice No.17R97. 2012. Cost Estimate Classification Sistem.
- [4] Soeharto, Imam. 1995. Manajemen Proyek Dari Konseptual Sampai Operasional. Jakarta : Erlangga
- [5] Evans, M. (2005). Overdue and over budget, over and over again. The Economist.
- [6] Phaobunjong, K. (2002). "Parametric Cost Estimating Model for Conceptual Cost Estimating of Building Construction Projects".
- [7] Riduwan. (2004). Metode dan Teknik Menyusun Tesis. Cetakan Pertama. Bandung : Alfabeta CV
- [8] Hardjomuljadi, Sarwono. 2014. Factor Analysis on Causal of Construction Claims and Disputes in Indonesia (with reference to the construction of hydroelectric power project in Indonesia). International Journal of Applied Engineering Research, ISSN 0973-4562, Volume 9, November 22, pp. 12421-12445
- [9] Dysert, Larry.1999." Developing a Parametric Model For Estimating Process Control Cost".
- [10] Sugiyono. (2013). Metode Penelitian Kuantitatif, Kualitatif dan R&D. Bandung : Alfabeta.CV