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ABSTRACT 

This study investigated the effects of non-spherical disturbance on the model parameters of some classical regression models. The 

aim was to examine the impacts of multicollinearity on the efficiency of classical Ordinary least squares (OLS) relative to the 

ridge regression (RR) and principal component regression (PCR) models. Data were simulated from a multivariate normal 

distribution with mean zero and variance-covariance matrix  at various sample sizes 25, 50, 100, 200, 500 and 1000. To assess the 

asymptotic efficiency and consistency of these regression models in the presence of multicollinearity, the evaluation criteria used 

were the Variance, Absolute bias, Mean Square Error (MSE) and Mean Square Error of Prediction (MSEP). Results from this 

work showed that the RR model had smaller variance, absolute bias and MSE when it was compared with OLS. Also, the ridge 

estimator had the least MSEP when compared to both the OLS and PCR models. Hence, it can be concluded that the ridge 

estimator performed better than the OLS and PCR when explanatory variables are highly correlated.  

Keywords: Ordinary least squares, Principal Component Regression, Ridge Regression, Spherical Disturbance, Mean Square 

Error. 
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1. INTRODUCTION 

Consider the population regression model with two explanatory variables, 

                                                                    (1) 

where   (     ) and variance of   is: 
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]
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The correlation   indicates collinearity between    and    , as this correlation approaches 1 the matrix X becomes singular and 

variance of a coefficient estimate   (     )   approaches infinity. If the predictors are not dependence  that is the correlation 

coefficient for these variables are zeros, the Eigenvalues of the data matrix X are equal to one and matrix X is of full rank such 

variables are called orthogonal or uncorrelated variables. On the other hand, if the variables are nonorthogonal (correlated), at 

least one of the Eigenvalue will be close to zero. (see El-Dereny and Rashwan (2011))  

Freund and Litell (2000), Batterham et al (1997), Wax (1992), Cavell et al (1998), Mofenson et al (1999), Elmstahl et al (1997), 

Parkin et al (2002) and Kinta et al (2002) indicated that collinearity leads to imprecise estimate of parameters, increases the 

estimate of standard error of coefficients, causing wider confidence interval and increasing the chance to reject the significance of 

the test statistic. 

El-Dereny and Rashwan (2011) compare ordinary ridge regression (ORR), generalized ridge regression (GRR), direct ridge 

regression (DRR) and ordinary least square (OLS). He discussed the properties of ridge regression estimators and method of 

http://doi.org/10.31695/IJERAT.2019.3444
https://ijerat.com/
https://www.google.com/search?q=Licensed+Under+Creative+Commons+Attribution+CC+BY&oq=Licensed+Under+Creative+Commons+Attribution+CC+BY&aqs=chrome..69i57&sourceid=chrome&ie=UTF-8


International Journal of Engineering Research And Advanced Technology, Vol.5, Issue 5, May-2019 

 

www.ijerat.com                                                                                                                                     Page 29 

DOI : 10.31695/IJERAT.2019.3444 

selecting biased ridge regression parameter K (shrinkage parameter). He reported that all methods of RR are better than OLS 

method. 

Ranjit (2013) described several methods for detecting multicollinearity that is, by observing the correlation matrix, VIF, 

Eigenvalues of the correlation matrix. He found out that the degree of multicollinearity is more severe as /X
1
X/ tends towards 

zero, and that multicollinearity cannot be eliminated completely but can be reduced by adopting methods such as RR, principal 

components regression (PCR) etc. 

Alabi et al (2008) reported that when the independent variables are correlated, the OLS estimates leads to the problem of large 

standard errors of the parameters which can cause low t-test value and result to acceptance of a null hypothesis. 

Feng-jeng (2008) solved the difficult problem of multicollinearity in the fitted regression model and further discussed that the 

problem of multicollinearity arise when there are approximate linear relationships between two or more predictors. A new 

estimator for solving multicollinearity problem in terms of parameter estimation known as maximum entropy was developed by 

Akdeniz (2011). 

Gorgees and Ali (2013) applied three different Ridge regressions namely, Ordinary ridge regression (ORR1) and (ORR2) and 

Generalized ridge regression (GRR) on a data set that suffers from multicollinearity problem. Using the standard Mean square 

Error and coefficient of the determinant (R
2
) the result shows that the GRR outperforms the other methods. Dorugade and Kashid 

(2010) proposed a new method of selecting ridge parameter (turning parameter K) the method is evaluated through a simulation 

study in term of mean square error and compare the ratio of the average of MSE with the ridge parameter suggested by Hoerl and 

Kennard and Khalaf and Shukur. It was discovered that the technique developed is better than the other ridge parameters. 

Using data set to examine the performance of the three biased regression estimators that is, principal component regression, partial 

Least squares and Ridge regression on prediction. It is shown that for prediction, PCR, PLS and RR gives the same results. (see 

Ying 2010). Paramveer et al (2013) compares the risk of Ridge Regression to a simple variant of Ordinary Least Square where 

data are projected onto a finite-dimensional subspace then, performs Ordinary Least Square OLS in the space. The result shows 

that the risk of Ordinary Least Square is within a constant factor of the Ridge Regression risk. 

2. LINEAR REGRESSION MODEL 

This study makes use of multiple regression model where n sample observations of a dependent variable Y, explanatory variable 

X and the relationship between X and Y are observed. The project commences with the case of a K regressors that is, k= 1, 2 …K. 

and this is written as: 

                         

Where    (i=0, 1, 2 …k) are the regression coefficient and ε is the error term. Thus, the linear equation can be written in matrix 

form as: 

       

Where Y is a vector of n× 1 observations of the dependent variable, X is an n× (k+1) matrix of independent variables, β is a (k+1) 

×1 vector of unknown parameters and ε is an n×1 vector of errors    (     )    

 Ordinary Least Squares Method 

The least square estimators  ̂  of    (          ) are the ones that minimize the sum of squares 

                                                                  ̂     = (   )     

The variance-covariance matrix of the parameter is   

 ( )      (   )   

                
∑ |       | 
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3. RIDGE REGRESSION 

Ridge regression is a method of tackling the threat of multicollinearity; RR coefficients    are the values of   that minimize a 

penalized residual sum of squares: 

        {∑ (     ∑      
 
   )  

     ∑    
   }     

 ̂  = (      )        

According to Hoerl and Kennard, the ridge parameter is:  

      
   

   
 

where ∑    
    is called the shrinkage penalty and   is the turning parameter.  The shrinkage penalty can shrinks the parameter 

estimates towards zero but not exactly zero. When the parameter   is zero, the ridge regression estimate will produce the same 

estimate as Ordinary Least square estimate. However as   tends to infinity, the ridge parameter estimate approaches zero. 

Variance of ridge regression estimate is:  
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4. PRINCIPAL COMPONENT REGRESSION (PCR) 

Principal Component Regression is also one of the techniques used in handling multicollinearity problem, and it requires some 

mathematical computations that do not exist in Normal regression analysis. This method rewritten the linear regression models in 

terms of uncorrelated independent variables and the new variables formed as a result of the linear combination of the original 

independent variables is called principal components. From linear regression model in equation two above, suppose there exist  a 

square matrix G  such that     =     equals identity matrix I (  is called the inverse of    and the matrix     is also an inverse 

 )  and  

 Let              where   is the diagonal matrix  in order of decreasing Eigen values of        that is,             

     , therefore equation (2) become 

           ,     since      = I 

       ,  where                                                                          

Z=   = [              ] these column of Z are called the principal components and       therefore, 

       =       and     (   ) (  )                   

The estimate of   will become:  

  ̂  (   ) 
 
     or  ̂    

  

http://www.ijerat.com/
http://doi.org/10.31695/IJERAT.2019.3444


International Journal of Engineering Research And Advanced Technology, Vol.5, Issue 5, May-2019 

 

www.ijerat.com                                                                                                                                     Page 31 

DOI : 10.31695/IJERAT.2019.3444 

The variance-covariance matrix is: 

V( ̂) =      
 

MSEP = 
 

 
( ̂   )

 
( ̂   ) 

5. DATA GENERATING PROCEDURE 

In this research work, five explanatory variables values were generated with the same sample size n. The sample sizes are 25, 50, 

100, 200, 500 and 1000 each of this sample sizes were generated over 1000 iteration to inspect the effect of the estimators with 

respect to this sample sizes. Data were generated using equation (3.1) above but in this case, we make use of five predictors and 

the regression parameters   ,   ,   ,   ,    and    are set to be 20, 40, 30, 50, 80 and 55 respectively. The variables are generated 

using multivariate normal distribution and make use of two correlation structures, these are: 

(
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The error term was generated using a normal distribution with mean zero and variance ten (10) and the relationship below is used 

to generate the regressand variable 

     + 40    30        +      +    +    

The purpose of all these simulation studies is to compare OLS and RR estimators through their absolute bias and MSE and so also 

to compare OLS, RR and PCR with respect to their mean square error of prediction (MSEP) to examine the predictive ability of 

each estimator. 

5. RESULTS 

Considering positive high correlation structure that is, r1=r2=r3=0.7; r4=r5=r6=0.8; r7=r8=r9=0.93; r10=0.95 the VIF for the 

simulated data set are as follows: 

Table 1: VARIANCE INFLATION FACTOR (VIF) OF THE VARIABLES 

SAMPLE 

SIZE 

X1 X2 X3 X4 X5 

n=25 5.747766 41.27515 16.20155 56.92161 275.6749 

n=50 6.210466 41.5237 10.504 41.00265 211.9157 

n=100 9.433733 56.20102 13.50942 60.03766 328.5111 

n=200 5.978252 30.85184 9.088591 38.95834 174.0173 

n=500 5.762636 33.79607 11.28923 41.32586 197.7226 

n=1000 6.219904 37.52424 11.57944 44.70781 209.2167 

 

From the above table, it can be seen that the variance inflation factor of the variables are more than ten (10) when the correlation 

between the explanatory variables was very high with different sample sizes except for X1 variable. Then, it is clearly shown that 

multicollinearity problem exists. Using method of OLS and RR to analyze the simulated data, the following results is obtained: 
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Table 2: Summary of the estimate of coefficient and variance using OLS and RR Method at  simulated sample size 25-1000 

 

SAMPLE 

SIZE 

 OLS ESTIMATE 
RIDGE ESTIMATE 

  Coefficient  Variance  Coefficient Variance 

n=25         20 20.09694 5.30926          20 20.04515 5.086045 

    40 40.05853 34.64088    40 40.05175 25.50986 

    30 30.95643 197.7324    30 31.02001 123.4974 

    50 49.88632 59.07554    50 50.17029 49.80548 

    80 80.58534 217.3549    80 80.00637 140.6385 

    55 53.57662 1104.867    55 53.70626 663.1037 

       

n=50    20 19.98742 2.315203    20 19.96973 2.286983 

    40 40.04765 16.37619    40 40.02747 13.34202 

    30 30.01891 85.73758    30 30.04423 63.2876 

    50 50.1007 26.559    50 50.20807 24.00618 

    80 79.86278 98.69653    80 79.58739 74.36975 

    55 54.99462 490.1038    55 55.09963 350.9956 

       

       

n=100    20 20.03455 1.058805      0 20.02519 1.052819 

    40 40.02255 7.35934    40 40.00853 6.588757 

    30 30.08981 41.44856    30 30.08108 35.9185 

    50 50.16944 13.20461    50 50.21071 12.59018 

    80 80.02442 46.61918    80 79.88036 40.81921 

    55 54.68129 233.1581    55 54.77774 198.7391 

       

n=200    20 20.00226 0.531346     20 19.99833 0.530053 

    40 40.02303 3.377697    40 40.00405 3.179135 

    30 30.18862 18.5691    30 30.15027 17.03515 

    50 50.12513 6.283709    50 50.13887 6.088489 

    80 80.03548 21.53696    80 79.9265 19.84494 

    55 54.67519 108.1894    55 54.80605 98.41056 
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n=500    20 20.00056 0.204958     20 19.999 0.204897 

    40 39.92333 1.37536    40 39.91996 1.339615 

    30 29.8807 7.152052    30 29.87783 6.885544 

    50 49.92647 2.434517    50 49.93565 2.400531 

    80 79.89837 8.592135    80 79.86788 8.305911 

    55 55.34286 42.07386    55 55.36432 40.38683 

       

n=1000    20 20.00803 0.088906    20 20.00735 0.088851 

    40 39.99234 0.685176    40 39.99013 0.676023 

    30 30.00141 3.816272    30 29.99805 3.746377 

    50 49.99058 1.201453    50 49.9938 1.193643 

    80 79.9891 4.683265    80 79.97376 4.603021 

    55 55.03201 22.83449    55 55.04663 22.38224 

 

Both methods (OLS and RR) produced close estimates to the true value across the sample sizes. Taking a look at their variances 

the ridge regression estimate has minimum variance compared to the ordinary least squaresxs estimate. Increasing the sample 

sizes improve the variance of the two estimates. At a point in time, OLS estimates and RR estimates converge. 

Table 3: Absolute bias of the estimators at various sample sizes 

 

SAMPLE SIZES 

 

ORDINARY LEAST SQUARES 

 

RIDGE 

n=25 10.22923 8.060476 

n=50 6.853374 5.921017 

n=100 4.701329 4.378599 

n=200 3.267761 3.135145 

n=500 2.026656 1.992275 

n=1000 1.478323 1.466578 

 

Table 3 present the Absolute bias of the estimators which is used to measure the consistency of the estimators, it was discovered 

that the RR has smaller absolute bias to that of the OLS estimate. Hence, this is an indication that ridge regression estimator is 

better than the Ordinary least square estimator though both are consistent and as the sample sizes become larger, the two 

estimators meet. The plot or graph line below shows the clearer picture of the presentations 
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Fig 1.: Plot of Absolute bias at various sample sizes 

Table 4: Mean square error of the estimators 

SAMPLE SIZES OLS MSE RR MSE 

n=25 270.1117 168.2302 

n=50 119.8501 87.99783 

n=100 57.10774 49.25471 

n=200 26.41471 24.17136 

n=500 10.32074 9.93991 

n=1000 5.546268 5.443419 

 

Table 4 presents the Mean Square Error MSE which is used to measure the efficiency of the estimators to the true values, it was 

observed that the RR estimator produce smaller MSE under the small, medium and large sample sizes compared to OLS 

estimator. While at large sample size the two estimators tends to produce similar mean square error (MSE) result. 
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    Table 5: Mean square error of prediction the estimators 

SAMPLE SIZE ORDINARY LEAST 

SQUARES  MSEP 

RIDGE  MSEP PC  MSEP 

n=25 75.7604 168.2302 75.7604 

n=50 88.4472 87.99783 88.4472 

n=100 94.25558 49.25471 94.25558 

n=200 96.79781 24.17136 96.79781 

n=500 98.70971 9.93991 98.70971 

n=1000 99.26722 5.443419 99.26722 
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Fig 2.: Plot of MSE prediction at various sample sizes 

Considering the predictive ability of the estimators, using their Mean Square Error of Prediction as a result were shown in table 

4.5 above, It was observed that the OLS and PC estimators performed better than RR at sample size 25. For sample size 50 and 

above, the ridge regression estimator outperformed the other two estimators. 

6. CONCLUSION 

In the simulation of this study, it was observed that in both variance and MSE, the RR outperformed the OLS estimator and as the 

sample size increases the two estimators improved in their absolute bias and so also the MSE, thus this lessens the strength of 

multicollinearity. Accessing the predictive ability of the three estimators using mean square error of prediction (MSEP), it was 

examined that RR has lower MSEP compared to the other estimators and that OLS and PCR have the same value of MSEP.   
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