Buckling Analysis of Thin Laminated Composite Plates using Finite Element Method

Mahmoud Yassin Osman¹, Osama Mohammed Elmardi Suleiman²

Professor¹
Department of Mechanical Engineering,
Faculty of Engineering,
Kassala University, Kassala,
Kassala State,
Sudan

Assistant Professor²
Department of Mechanical Engineering,
Faculty of Engineering and Technology,
Nile Valley University, Atbara,
River Nile State,
Sudan

Abstract

Finite element method (FEM) is utilized to obtain numerical solution of the governing differential equations. Buckling analysis of rectangular laminated plates with rectangular cross – section for various combinations of boundary conditions and aspect ratios is studied. To verify the accuracy of the present technique, buckling loads are evaluated and validated with other works available in the literature. The good agreement with other available data demonstrates the reliability of finite element method used. New numerical results are generated for uniaxial and biaxial compression loading of symmetrically laminated composite plates; they are focused on the significant effects of buckling for various parameters such as boundary condition, aspect ratio and modular ratio. It was found that the effect of boundary conditions on buckling load increases as the aspect ratio increases for both uniaxial and biaxial compression loading. It was also found that, the variation of buckling load with aspect ratio becomes almost constant for higher values of elastic modulus ratio.

Keywords: Finite element method, classical plate theory, buckling, thin plates, laminated composites.

1. INTRODUCTION

Composite materials are widely used in a broad spectrum of modern engineering application fields ranging from traditional fields such as automobiles, robotics, day to day appliances etc. to highly sophisticated applications such as space industries. This is due to their excellent high strength to weight ratio, high stiffness, and the controllability of the
Mahmoud Yassin Osman et al., Buckling Analysis of Thin Laminated Composite Plate using FEM ... structural properties with the variation of fiber orientation, stacking scheme and the number of laminates. Among the various aspects of the structural performance of structures made of composite materials is the mechanical behavior of rectangular laminated plates which has drawn much attention. In particular, consideration of the buckling phenomena in such plates is essential for the efficient and reliable design and for the safe use of the structural element. Due to the anisotropic and coupled material behavior, the analysis of composite laminated plates is generally more complicated than the analysis of homogeneous isotropic ones.

The members and structures composed of laminated composite material are usually very thin, and hence more prone to buckling. Buckling phenomenon is critically dangerous to structural components because it leads to failure at relatively low stress. General introductions to the buckling of elastic structures and of laminated plates can be found in e.g. Refs. [1] – [14]. However, these available data are restricted to idealized loading, namely, uniaxial or biaxial uniform compression.

Due to the importance of buckling considerations, there are an overwhelming number of investigations available in which corresponding stability problems are considered by a wide variety of methods which may be of a closed – form analytical nature or may be sorted into the class of semi – analytical or purely numerical analysis method.

Closed – form exact solutions for the buckling problem of rectangular composite plates are available only for limited combinations of boundary conditions and lamination schemes. These include cross – ply symmetric and angle – ply anti – symmetric rectangular laminates with at least two opposite edges simply supported, and similar plates with two opposite edges clamped but free to deflect (i.e. guided clamp) or with one edge simply supported and the opposite edge with a guided clamp. Most of the exact solutions discussed in the monographs of Whitney [15] who developed an exact solution for critical buckling of solid rectangular orthotropic plates with all edges simply supported, and of Reddy [16] – [19] and Leissa and Kang [20], and that of Refs. [7] and [21]. Bao et al. [22] developed an exact solution for two edges simply supported and two edges clamped, and Robinson [23] who developed an exact solution for the critical buckling stress of an orthotropic sandwich plate with all edges simply supported.

For all other configurations, for which only approximated results are available, several semi – analytical and numerical techniques have been developed. The Rayleigh – Ritz method [21] and [24], the finite strip method (FSM) [4] and [25], the element free Galerkin method (EFG) [26], the differential quadrature technique [27], the moving least square differential quadrature method [28] and the most extensively used finite element method (FEM) [29] are the most common ones.

Many authors have used finite element method to predict accurate in – plane stress distribution which is then used to solve the buckling problem. Zienkiewicz [30] and Cook [31] have clearly presented an approach for finding the buckling strength of plates by first solving the linear elastic problem for a reference load and then the eigenvalue problem for the smallest eigenvalue which when multiplied by the reference load gives the critical buckling load of the structure. An excellent review of the development of plate finite elements during the past 35 years was presented by Yang et al. [32].

Many buckling analysis of composite plates available in literature are usually realized parallel with the vibration analyses, and are based on two – dimensional plate theories which may be classified as classical and shear deformable ones. Classical plate theories (CPT) are based on Kirchhoff's hypothesis which assumes that normal to the mid –
surface of the plate before deformation remain straight and normal to the mid–surface after deformation. These theories are widely used for the analysis of thin plates. The only limitation of this theory is that, it is not adequate for the buckling analysis of moderately thick and thick laminates. However, it gives reasonably accurate results for many engineering problems in bending, buckling and vibration of isotropic, orthotropic and laminated composite plates. Shear deformable plate theories are usually based on a displacement field assumption. Taking these functions as linear square and cubic forms leads to the so–called uniform or Mindlin shear deformable plate theory (USDPT) [33], and parabolic shear deformable plate theories (PSDPT) [34] respectively. Different forms were also employed such as hyperbolic shear deformable plate theory (HSDPT) [35], and trigonometric or sine functions shear deformable plate theory (TSDPT) [36]. Since these types of shear deformation theories do not satisfy the continuity conditions among many layers of the composite structures, the zig–zag or the corrugated type of the plate theories introduced by Di Sciuva [37], and Cho and Parmeter [38] in order to consider interlaminar stress continuities. Recently, Karama et al. [39] proposed a new exponential function {i.e. exponential shear deformable plate theory (ESDPT)} in the displacement field of the composite laminated structures for the representation of the shear stress distribution along the thickness of the composite structures and compared their result for static and dynamic problem of the composite beams with the sine model.

The theory used in the present work comes under the class of displacement-based theories. Extensions of these theories which include the linear terms in \(z \) in \(u \) and \(v \) and only the constant term in \(w \), to account for higher–order variations and to laminated plates, can be found in the work of Yang, Norris and Stavsky [40], Whitney and Pagano [41] and Phan and Reddy [42]. In the present work, classical plate theory is used, which is appropriate for thin laminated plates.

In the present study, the composite media are assumed free of imperfections i.e. initial geometrical imperfections due to initial distortion of the structure, and material and / or constructional imperfections such as broken fibers, delaminated regions, cracks in the matrix material, foreign inclusions and small voids which are due to inconvenient selection of fibers / matrix materials and manufacturing defects. Therefore, the fibers and matrix are assumed perfectly bonded.

2. MATHEMATICAL FORMULATION

Consider a thin plate of length a, breadth b, and thickness h as shown in Figure 2.1a, subjected to in–plane loads \(R_x \), \(R_y \) and \(R_{xy} \) as shown in Figure 2.1b. The in–plane displacements\(u(x, y, z) \) and\(v(x, y, z) \), can be expressed in terms of the out–of–plane displacement \(w(x, y) \) as shown below.

\[
\begin{align*}
 u &= -z \frac{\partial w}{\partial x} \\
 v &= -z \frac{\partial w}{\partial y}
\end{align*}
\]
Figure 2.1

Figure 2.2 Geometry of an n-Layered laminate

The plate shown in figure 2.1a is constructed of an arbitrary number of orthotropic layers bonded together as in figure 2.2 above.

The strain – displacement relations according to the large deformation theory are:

\[
\begin{align*}
\epsilon_x &= \frac{\partial u}{\partial x} + \frac{1}{2} \left(\frac{\partial w}{\partial x} \right)^2 = -\frac{z}{2} \frac{\partial^2 w}{\partial x^2} + \frac{1}{2} \left(\frac{\partial w}{\partial x} \right)^2 \\
\epsilon_y &= \frac{\partial v}{\partial y} + \frac{1}{2} \left(\frac{\partial w}{\partial y} \right)^2 = -\frac{z}{2} \frac{\partial^2 w}{\partial y^2} + \frac{1}{2} \left(\frac{\partial w}{\partial y} \right)^2 \\
\epsilon_{xy} &= \frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial w}{\partial x} \frac{\partial w}{\partial y} = -2z \frac{\partial^2 w}{\partial x \partial y} + \frac{\partial w}{\partial x} \frac{\partial w}{\partial y}
\end{align*}
\]

These can be written as:

\[\epsilon = \epsilon_1 + \epsilon_2\]

Where, \(\epsilon = [\epsilon_x, \epsilon_y, \epsilon_{xy}]^T\) and \(\epsilon_1\) and \(\epsilon_2\) represent the linear and non-linear parts of the strain, i.e.
The virtual linear strains can be written as:
\[
\delta \varepsilon_1 = -z \left[\frac{\partial^2 w}{\partial x^2} \frac{\partial^2 w}{\partial y^2} + 2 \frac{\partial w}{\partial x} \frac{\partial w}{\partial y} \right] \delta w \tag{4}
\]

The virtual linear strains energy
\[
\delta U = \int_V \delta \varepsilon_1^T \sigma \, dV \tag{5}
\]

Where \(V \) denotes volume.

The stress – strain relations,
\[
\sigma = C \, \varepsilon_1
\]

Where \(C \) are the material properties.

\[
C = \begin{bmatrix} C_{11} & C_{12} & C_{16} \\ C_{12} & C_{22} & C_{26} \\ C_{16} & C_{26} & C_{66} \end{bmatrix}
\]

Where \(C_{ij} \) are given in Appendix (A).

Substitute for \(\sigma \) in equation (5).
\[
\delta U = \int_V \delta \varepsilon_1^T C \, \varepsilon_1^T \, dV \tag{6}
\]

Now express \(w \) in terms of the shape functions \(N \) (given in Appendix (B)) and nodal displacements \(\delta a^e \), equation (2) can be written as:
\[
\delta \varepsilon_1 = -z B \, \delta a^e
\]

Where,
\[
B_i = \left[\frac{\partial^2 N_i}{\partial x^2} \frac{\partial^2 N_i}{\partial y^2} + 2 \frac{\partial^2 N_i}{\partial x \partial y} \right]^T
\]

Hence equation (6) can be written in the form,
\[
\delta U = \int_V (B \, \delta a^e)^T (C \, z^2) (B \, a^e) \, dV
\]
or
\[
\delta U = \delta a^e^T \int B^T D B \, a^e \, dx \, dy
\]

Where,
\[
D = \sum_{k=1}^{n} \int_{z_k}^{z_{k+1}} C \, z^2 \, dz
\]
Hence, the virtual strain energy,

$$\delta U = \delta a^T K e a^e$$ \hspace{1cm} (7)

Where K^e is the element stiffness matrix,

$$i.e. \quad K^e = \int B^T D B \, dx \, dy$$ \hspace{1cm} (8)

Now equation (3) can be written in the form,

$$\epsilon_2 = \frac{1}{2} \begin{bmatrix} \frac{\partial}{\partial x} & 0 & \frac{\partial}{\partial y} \\ 0 & \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ \frac{\partial}{\partial y} & \frac{\partial}{\partial x} & 0 \end{bmatrix} \begin{bmatrix} \frac{\partial w}{\partial x} \\ \frac{\partial w}{\partial y} \\ \frac{\partial w}{\partial x} \frac{\partial w}{\partial y} \end{bmatrix}$$

The non-linear virtual strain,

$$\delta \epsilon_2 = \begin{bmatrix} \frac{\partial}{\partial x} & 0 & \frac{\partial}{\partial y} \\ 0 & \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ \frac{\partial}{\partial y} & \frac{\partial}{\partial x} & 0 \end{bmatrix} \begin{bmatrix} \frac{\partial w}{\partial x} \\ \frac{\partial w}{\partial y} \\ \frac{\partial w}{\partial x} \frac{\partial w}{\partial y} \end{bmatrix}$$

The virtual work,

$$\delta W = \int \delta \epsilon_2^T \sigma \, dV = \int \begin{bmatrix} \frac{\partial w}{\partial x} & \frac{\partial w}{\partial y} & \frac{\partial w}{\partial x} \frac{\partial w}{\partial y} \end{bmatrix} \begin{bmatrix} \frac{\partial w}{\partial x} \\ \frac{\partial w}{\partial y} \\ \frac{\partial w}{\partial x} \frac{\partial w}{\partial y} \end{bmatrix} \begin{bmatrix} \sigma_x \\ \sigma_y \\ \sigma_x \sigma_y \end{bmatrix} \, dV$$

$$\delta W = \int \begin{bmatrix} \frac{\partial w}{\partial x} & \frac{\partial w}{\partial y} & \frac{\partial w}{\partial x} \frac{\partial w}{\partial y} \end{bmatrix} \begin{bmatrix} \sigma_x \\ \sigma_y \\ \sigma_x \sigma_y \end{bmatrix} \, dx \, dy$$

Where,

$$[R_x, R_y, R_{xy}] = \int_{-h/2}^{h/2} [\sigma_x, \sigma_y, \sigma_{xy}] \, dz$$

And σ_x, σ_y, and σ_{xy} are the in-plane stresses.

The previous equation can be written as:

$$\delta W = \int \begin{bmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial x} \frac{\partial}{\partial y} \end{bmatrix} \begin{bmatrix} R_x \\ R_y \\ R_{xy} \end{bmatrix} \begin{bmatrix} \frac{\partial w}{\partial x} \\ \frac{\partial w}{\partial y} \\ \frac{\partial w}{\partial x} \frac{\partial w}{\partial y} \end{bmatrix} \, dx \, dy$$

Introducing the shape functions and nodal displacements, we get:
\[
\delta W = \delta a^e \int \begin{bmatrix}
\frac{\partial N_i}{\partial x} & \frac{\partial N_i}{\partial y}
\end{bmatrix}
\begin{bmatrix}
R_x & R_{xy} \\
R_{xy} & R_y
\end{bmatrix}
\begin{bmatrix}
\frac{\partial N_j}{\partial x} \\
\frac{\partial N_j}{\partial y}
\end{bmatrix}
\delta a^e
dx
dy
\]

Now, let \(R_x = -P_x, \quad R_y = -P_y, \quad \text{and} \quad R_{xy} = -P_{xy} \)

\[
\delta W = -\delta a^e^T P_k K^{ed} a^e \quad (9)
\]

Where,

\[
K^{ed} = \int \begin{bmatrix}
\frac{\partial N_i}{\partial x} & \frac{\partial N_i}{\partial y}
\end{bmatrix}
\begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
\frac{\partial N_j}{\partial x} \\
\frac{\partial N_j}{\partial y}
\end{bmatrix}
dx
dy \quad (10)
\]

\(K^{ed} \) is the element differential matrix.

Now,

\[
\delta U + \delta W = 0
\]

\(i.e. \quad \delta a^e^T K^e a^e - \delta a^e^T P_k K^{ed} a^e = 0 \)

Now since \(\delta a^e^T \) is arbitrary and cannot be equal to zero, it follows that,

\[
[K^e - P_k K^{ed}]a^e = 0
\]

When the plate is divided into a number of elements, the global equation is:

\[
[K - P_k K^D]a^e = 0 \quad (11)
\]

Where,

\[
K = \sum K^e, \quad K^D = \sum K^{ed}, \quad a = \sum a^e
\]

Since, \(a \neq 0 \), then the determinant,

\[
|K - P_k K^D| = 0 \quad (12)
\]

Hence, the buckling loads \(P_k \) and the buckling modes can be evaluated.

The elements of the stiffness matrix are obtained from equation (8) which can be expanded as follows:

\[
K_{ij}^{e} = \int \begin{bmatrix}
\frac{\partial^2 N_i}{\partial x^2} & \frac{\partial^2 N_i}{\partial x \partial y} & 2 \frac{\partial^2 N_i}{\partial x \partial y}
\end{bmatrix}
\begin{bmatrix}
D_{11} & D_{12} & D_{16} \\
D_{12} & D_{22} & D_{26} \\
D_{16} & D_{26} & D_{66}
\end{bmatrix}
\begin{bmatrix}
\frac{\partial^2 N_j}{\partial x^2} \\
\frac{\partial^2 N_j}{\partial x \partial y} \\
2 \frac{\partial^2 N_j}{\partial x \partial y}
\end{bmatrix}
dx
dy
\]

\(i.e. \quad K_{ij}^{e} = \int \left(D_{11} \frac{\partial^2 N_i}{\partial x^2} \frac{\partial^2 N_j}{\partial x^2} + D_{12} \left(\frac{\partial^2 N_i}{\partial x \partial y} \frac{\partial^2 N_j}{\partial x^2} + \frac{\partial^2 N_i}{\partial x^2} \frac{\partial^2 N_j}{\partial y^2} \right) + D_{16} \frac{\partial^2 N_i}{\partial x \partial y} \frac{\partial^2 N_j}{\partial x \partial y} + 4D_{66} \frac{\partial^2 N_i}{\partial x \partial y} \frac{\partial^2 N_j}{\partial x \partial y} + 2D_{26} \left(\frac{\partial^2 N_i}{\partial x \partial y} \frac{\partial^2 N_j}{\partial x \partial y} + \frac{\partial^2 N_i}{\partial x^2} \frac{\partial^2 N_j}{\partial x \partial y} \right) \right) dx
dy \)
The elements of the differential matrix are obtained from equation (10) which when expanded becomes:

\[k_{ij} = \int \left[\frac{\partial N_i}{\partial x} \frac{\partial N_j}{\partial x} + \frac{\partial N_i}{\partial y} \frac{\partial N_j}{\partial y} + \frac{\partial N_i}{\partial x} \frac{\partial N_j}{\partial y} \right] \, dx \, dy \quad (13) \]

The integrals in equations (13) and (14) are given in Appendix (C). We use a 4 – noded element as shown in Figure (2.2) below.

The shape functions for the 4 – noded element expressed in global coordinates \((x, y)\). we take:

\[w = N_1 w_1 + N_2 \phi_1 + N_3 \psi_1 + N_4 w_2 + N_5 \phi_2 + N_6 \psi_2 + N_7 w_3 + N_8 \phi_3 + N_9 \psi_3 + N_{10} w_4 + N_{11} \phi_4 + N_{12} \psi_4 \]

where, \(\phi = \frac{\partial w}{\partial x} \), and \(\psi = \frac{\partial w}{\partial y} \)

The shape functions in local coordinates \((r, s)\) are as follows:

\[N_i = a_{i,1} + a_{i,2} r + a_{i,3} s + a_{i,4} r^2 + a_{i,5} r s + a_{i,6} s^2 + a_{i,7} r^3 + a_{i,8} r^2 s + a_{i,9} r s^2 + a_{i,10} s^3 + a_{i,11} r^3 s + a_{i,12} r^2 s^3 \]

Where, \(i = 1, 2, 3, \ldots, 12 \)

The coefficients \(a_{i,1}, a_{i,2}, etc \) are given in Appendix (B).

In the analysis, the following nondimensional quantities are used:

\[\bar{w} = \left(\frac{1}{h} \right) w \ , \ \bar{\phi} = \left(\frac{h}{a} \right) \phi \ , \ \bar{\psi} = \left(\frac{h}{a} \right) \psi \]

\[\bar{D} = \left(\frac{1}{E_1 h^3} \right) D \ , \ \bar{p} = \left(\frac{a^2}{E_1 h^3} \right) p \ , \ \bar{b} = b/a \]

Where, \(E_1 \) is the modulus in direction of the fiber.

3. BOUNDARY CONDITIONS
All of the analyses described in the present paper have been undertaken assuming the plate to be subjected to identical and/or different support conditions on the four edges of the plate. The five sets of the edge conditions used here are designated as clamped − clamped (CC), simply − simply supported (SS), clamped − simply supported (CS), clamped − free (CF) and simply supported − free (SF) are shown in table 3.1 below.

Table 3.1 Boundary conditions

<table>
<thead>
<tr>
<th>Boundary Conditions</th>
<th>at x = 0, x = a</th>
<th>at y = 0, y = b</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>w = φ = ψ = 0</td>
<td>w = φ = ψ = 0</td>
</tr>
<tr>
<td>SS</td>
<td>w = ψ = 0</td>
<td>w = φ = 0</td>
</tr>
<tr>
<td>CS</td>
<td>w = φ = ψ = 0</td>
<td>w = φ = 0</td>
</tr>
<tr>
<td>CF</td>
<td>w = φ = ψ = 0</td>
<td>--</td>
</tr>
<tr>
<td>SF</td>
<td>w = ψ = 0</td>
<td>--</td>
</tr>
</tbody>
</table>

4. VERIFICATION OF THE FINITE ELEMENT (FE) PROGRAM

Table 4.1 below shows the effect of stacking sequence, plate aspect ratio, and modulus ratio on nondimensional critical loads \(\bar{P} = P(b^2/\pi^2D_{22}) \) of rectangular laminates under uniaxial as well as biaxial compression. The following material properties were used: \(E_1/E_2 = 10 \) and \(G_{12} = G_{13} = 0.5E_2, v_{12} = 0.25 \). It is observed that the nondimensional buckling load increases for symmetric laminates as the modular ratio increases. The present results are compared with Reddy [43]. The verification process showed good agreement especially as the aspect ratio increases.

Table 4.1 Buckling load for 0/90/90/0 simply supported (SS) plate for different aspect and moduli ratios

<table>
<thead>
<tr>
<th>Aspect Ratio a/b</th>
<th>Modular Ratio</th>
<th>Uniaxial Compression</th>
<th>Biaxial Compression</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E_1/E_2</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>0.5</td>
<td>Present</td>
<td>17.958</td>
<td>22.566</td>
</tr>
<tr>
<td>1.0</td>
<td>Present</td>
<td>6.274</td>
<td>7.003</td>
</tr>
<tr>
<td>1.5</td>
<td>Present</td>
<td>5.215</td>
<td>5.221</td>
</tr>
<tr>
<td></td>
<td>Ref. [43]</td>
<td>5.277</td>
<td>5.318</td>
</tr>
</tbody>
</table>

Table 4.2 contains nondimensional buckling loads \(\bar{P} = Pb^2/E_2h^3 \) of antisymmetric angle − ply laminates under uniaxial and biaxial in-plane compressive loads. The material properties used for atypical lamina are:

\(G_{12} = 0.5E_2 \) and \(v_{12} = 0.25 \)
It is observed from table 4.2 that the prediction of the buckling loads by the present study is closer to that of Reddy [43]. It should be noted that coupling between extensions and bending is not considered in the present analysis. Coupling effect is more pronounced in antisymmetric angle–ply laminates with few layers. When the number of layers is large, coupling effect becomes negligible as in the case of the 8-layer laminate considered for comparison in the table 4.2.

Table 4.2 Buckling load for $(45/-45)_4$ simply supported (SS) plate for different moduli and aspect ratios

<table>
<thead>
<tr>
<th>Aspect Ratio a/b</th>
<th>Modular Ratio</th>
<th>Uniaxial Compression $E_1/E_2 = 10$</th>
<th>Biaxial Compression $E_1/E_2 = 10$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Modular Ratio</td>
<td>Uniaxial Compression $E_1/E_2 = 25$</td>
<td>Biaxial Compression $E_1/E_2 = 25$</td>
</tr>
<tr>
<td>0.5</td>
<td>Present</td>
<td>24.348</td>
<td>55.790</td>
</tr>
<tr>
<td></td>
<td>Ref. [43]</td>
<td>23.746</td>
<td>53.888</td>
</tr>
<tr>
<td>1.0</td>
<td>Present</td>
<td>18.124</td>
<td>42.690</td>
</tr>
<tr>
<td></td>
<td>Ref. [43]</td>
<td>17.637</td>
<td>41.166</td>
</tr>
<tr>
<td>1.5</td>
<td>Present</td>
<td>18.977</td>
<td>44.476</td>
</tr>
<tr>
<td></td>
<td>Ref. [43]</td>
<td>18.565</td>
<td>43.091</td>
</tr>
</tbody>
</table>

5. NEW NUMERICAL RESULTS

It was decided to undertake study case and generate results of buckling loads for cross–ply symmetrically laminated $(0/90/90/0)$ and $(0/90/0)$ composite plates to be used as bench marks for other researchers. The buckling loads of the plates are highly influenced by several factors such as aspect ratio, the boundary conditions, and the modulus ratio. Large amount of data has been produced which cannot be presented in a limited space as provided by this publication. The results are shown in tables 5.1, 5.2, 5.3 and 5.4 below.

Table 5.1 Buckling load for $0/90/90/0$ plate with different boundary conditions and aspect ratios

<table>
<thead>
<tr>
<th>$P = Pa^2/E_1h^3.$</th>
<th>$E_1/E_2 = 40,$</th>
<th>$G_{12} = 0.5E_2$ and $v_{12} = 0.25$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Uniaxial loading</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a/b</td>
<td>CC</td>
<td>SS</td>
</tr>
<tr>
<td>0.5</td>
<td>2.8999</td>
<td>0.7355</td>
</tr>
<tr>
<td>1.0</td>
<td>3.3568</td>
<td>0.8823</td>
</tr>
<tr>
<td>1.5</td>
<td>5.1730</td>
<td>1.4268</td>
</tr>
<tr>
<td>(b) Biaxial loading</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a/b</td>
<td>CC</td>
<td>SS</td>
</tr>
<tr>
<td>0.5</td>
<td>1.0827</td>
<td>0.4213</td>
</tr>
<tr>
<td>1.0</td>
<td>1.3795</td>
<td>0.4411</td>
</tr>
<tr>
<td>1.5</td>
<td>1.6367</td>
<td>0.4391</td>
</tr>
</tbody>
</table>

Table 5.2 Buckling load for $0/90/90/0$ plate with different boundary conditions and aspect ratios

<table>
<thead>
<tr>
<th>$P = Pa^2/E_1h^3.$</th>
<th>$E_1/E_2 = 5,$</th>
<th>$G_{12} = 0.5E_2$ and $v_{12} = 0.25$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Uniaxial loading</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a/b</td>
<td>CC</td>
<td>SS</td>
</tr>
<tr>
<td>0.5</td>
<td>1.0827</td>
<td>0.4213</td>
</tr>
<tr>
<td>1.0</td>
<td>1.3795</td>
<td>0.4411</td>
</tr>
<tr>
<td>1.5</td>
<td>1.6367</td>
<td>0.4391</td>
</tr>
</tbody>
</table>
(a) Uniaxial loading

<table>
<thead>
<tr>
<th>a/b</th>
<th>CC</th>
<th>SS</th>
<th>CS</th>
<th>CF</th>
<th>SF</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>3.1453</td>
<td>0.8598</td>
<td>3.0821</td>
<td>3.0789</td>
<td>0.8556</td>
</tr>
<tr>
<td>1.0</td>
<td>4.3829</td>
<td>1.3969</td>
<td>3.5498</td>
<td>3.4952</td>
<td>1.3294</td>
</tr>
<tr>
<td>1.5</td>
<td>8.3429</td>
<td>2.9125</td>
<td>4.7780</td>
<td>4.4915</td>
<td>2.5354</td>
</tr>
</tbody>
</table>

(b) Biaxial loading

<table>
<thead>
<tr>
<th>a/b</th>
<th>CC</th>
<th>SS</th>
<th>CS</th>
<th>CF</th>
<th>SF</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>1.8172</td>
<td>0.6877</td>
<td>1.6838</td>
<td>1.6578</td>
<td>0.6874</td>
</tr>
<tr>
<td>1.0</td>
<td>2.2064</td>
<td>0.6985</td>
<td>1.8328</td>
<td>1.8125</td>
<td>0.5990</td>
</tr>
<tr>
<td>1.5</td>
<td>2.8059</td>
<td>0.8962</td>
<td>1.7618</td>
<td>1.6983</td>
<td>0.8953</td>
</tr>
</tbody>
</table>

Table 5.3 Buckling load for 0/90/0 plate with different boundary conditions ($\bar{P} = Pa^2/E_1h^3$). $E_1/E_2 = 40$, $G_{12} = 0.5E_2\nu_{12} = 0.25$

(a) Uniaxial loading

<table>
<thead>
<tr>
<th>a/b</th>
<th>CC</th>
<th>SS</th>
<th>CS</th>
<th>CF</th>
<th>SF</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>2.7304</td>
<td>0.8011</td>
<td>2.6555</td>
<td>2.6435</td>
<td>0.8010</td>
</tr>
<tr>
<td>1.0</td>
<td>3.3700</td>
<td>0.8823</td>
<td>3.2149</td>
<td>3.2142</td>
<td>0.8809</td>
</tr>
<tr>
<td>1.5</td>
<td>4.1817</td>
<td>1.1421</td>
<td>3.4017</td>
<td>3.3947</td>
<td>1.1313</td>
</tr>
</tbody>
</table>

(b) Biaxial loading

<table>
<thead>
<tr>
<th>a/b</th>
<th>CC</th>
<th>SS</th>
<th>CS</th>
<th>CF</th>
<th>SF</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.7529</td>
<td>0.3325</td>
<td>0.7201</td>
<td>0.7143</td>
<td>0.3319</td>
</tr>
<tr>
<td>1.0</td>
<td>0.9511</td>
<td>0.3489</td>
<td>0.7932</td>
<td>0.7803</td>
<td>0.3478</td>
</tr>
<tr>
<td>1.5</td>
<td>1.1763</td>
<td>0.3514</td>
<td>0.8099</td>
<td>0.7940</td>
<td>0.3472</td>
</tr>
</tbody>
</table>

Table 5.4 Buckling load for 0/90/0 plate with different boundary conditions and aspect ratios ($\bar{P} = Pa^2/E_1h^3$. $E_1/E_2=5$, $G_{12}=0.5E_2\nu_{12}=0.25$)

(a) Uniaxial loading

<table>
<thead>
<tr>
<th>a/b</th>
<th>CC</th>
<th>SS</th>
<th>CS</th>
<th>CF</th>
<th>SF</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>3.3624</td>
<td>0.9142</td>
<td>3.3112</td>
<td>4.2781</td>
<td>0.9105</td>
</tr>
<tr>
<td>1.0</td>
<td>4.3977</td>
<td>1.3969</td>
<td>3.7376</td>
<td>3.6940</td>
<td>1.3439</td>
</tr>
<tr>
<td>1.5</td>
<td>7.7135</td>
<td>2.6763</td>
<td>4.7942</td>
<td>4.5828</td>
<td>2.4048</td>
</tr>
</tbody>
</table>

(b) Biaxial loading

<table>
<thead>
<tr>
<th>a/b</th>
<th>CC</th>
<th>SS</th>
<th>CS</th>
<th>CF</th>
<th>SF</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>1.7380</td>
<td>0.6871</td>
<td>1.6337</td>
<td>1.5690</td>
<td>0.6872</td>
</tr>
</tbody>
</table>
In tables 5.1 and 5.2, the buckling loads for symmetrically laminated composite plates of layer orientation 0/90/90/0 have been determined for three different aspect ratios ranging from 0.5 to 1.5 and two modulus ratios 40 and 5. It is observed that the buckling load increases with increasing aspect ratio for both uniaxial and biaxial compression loading. The buckling load is maximum for clamped – clamped (CC), clamped – simply supported (CS) and clamped – free (CF) boundary conditions, while minimum for simply – simply supported (SS) and simply supported – free (SF) boundary conditions. This means that as the plate becomes more restrained, its resistance to buckling increases. The reason is that the structural stiffness reduces due to its constraints. Also, the variation of buckling load with aspect ratio in biaxial compression becomes almost constant for higher values of elastic modulus ratio for approximately all boundary conditions except clamped – clamped (CC) and to some extent clamped – simply supported (CS). The reason behind this is that the longitudinal elastic modulus is a resistance variable and therefore an increase in its magnitude will improve the reliability of the numerical results.

The same behavior of buckling load applies to symmetrically laminate composite plates 0/90/0 as shown in tables 5.3 and 5.4.

6. CONCLUSIONS

Buckling response of symmetric cross – ply rectangular laminates under uniaxial and biaxial compression is predicted using finite element analysis based on classical laminate theory. The effect of boundary condition, aspect ratio and elastic modulus ratio on buckling load is explained. It is found that as the plate becomes more restrained its resistance to buckling increases. Also, the buckling load decreases as the modulus ratio increases and becomes almost constant for higher values of elastic modular ratio.

ACKNOWLEDGEMENT

The authors would like to acknowledge with deep thanks and profound gratitude Mr. Osama Mahmoud of Daniya Center for Publishing and Printing Services, Atbara, who spent many hours in editing, re – editing of the manuscript in compliance with the standard format of International Journal of Engineering Research and Advanced Technology (IJERAT).

REFERENCES

Mahmoud Yassin Osman et al., Buckling Analysis of Thin Laminated Composite Plate using FEM...

APPENDICES

Appendix (A)

The transformed material properties are:

\[C_{11} = C'_{11} \cos^4 \theta + C'_{22} \sin^4 \theta + 2(C'_{12} + C'_{66}) \sin^2 \theta \cos^2 \theta \]

\[C_{12} = (C'_{11} + C'_{22} - 4C'_{66}) \sin^2 \theta \cos^2 \theta + C'_{12} (\cos^4 \theta + \sin^4 \theta) \]

\[C_{22} = C'_{11} \sin^4 \theta + C'_{22} \cos^4 \theta + 2(C'_{12} + 2C'_{66}) \sin^2 \theta \cos^2 \theta \]

\[C_{16} = (C'_{11} - C'_{12} - 2C'_{66}) \cos^3 \theta \sin \theta - (C'_{22} - C'_{12} - 2C'_{66}) \sin^3 \theta \cos \theta \]

\[C_{26} = (C'_{11} - C'_{12} - 2C'_{66}) \cos^3 \theta \sin \theta - (C'_{22} - C'_{12} - 2C'_{66}) \sin^3 \theta \cos \theta \]

\[C_{66} = (C'_{11} + C'_{22} - 2C'_{12} - 2C'_{66}) \sin^2 \theta \cos^2 \theta + C'_{66} (\sin^4 \theta + \cos^4 \theta) \]

where \(C'_{11} = \frac{E_1}{1 - v_{12}v_{21}} \), \(C'_{22} = \frac{E_2}{1 - v_{12}v_{21}} \), \(C'_{12} = \frac{v_{12}E_2}{1 - v_{12}v_{21}} \), \(C'_{16} = C'_{62} \).
Appendix (B)

\[a_{ij}/8 \]

\[\begin{array}{c|cccc|cccc}
N_i & 1 & 2 & 3 & 4 \\
\hline
N_1 & 2 & -3 & 3 & 0 & -4 & 0 & 1 & 0 & 0 & -1 & 1 & 1 \\
1 & -1 & 1 & -1 & 0 & 1 & -1 & 0 & 0 & 1 & 0 \\
-1 & 1 & -1 & 0 & 1 & 1 & 0 & 0 & -1 & 1 & 0 & -1 \\
2 & -3 & -3 & 0 & 4 & 0 & 1 & 0 & 0 & -1 & 1 & -1 \\
1 & -1 & -1 & -1 & 1 & 0 & 1 & 0 & 0 & -1 & 0 & 0 \\
-1 & -1 & -1 & 0 & -1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
2 & 3 & 3 & 0 & -4 & 0 & -1 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & -1 & 1 & 1 & 0 & 1 & -1 & 0 & 0 & -1 & 0 \\
1 & 1 & -1 & 0 & -1 & -1 & 0 & 0 & -1 & 1 & 0 & 1 \\
\end{array} \]

Appendix (C)

The integrals in equations (13) and (14) are given in nondimensional form as follows (limits of integration \(r, s = -1 \) to 1):

\[
\frac{\partial^2 N_i}{\partial x^2} \frac{\partial^2 N_j}{\partial x^2} \, dx \, dy = \frac{4h_y}{h_x^3} \int \frac{\partial^2 N_i}{\partial r^2} \frac{\partial^2 N_j}{\partial r^2} \, dr \, ds = \frac{4n^3}{mR} (16a_{i,4}a_{j,4} + 48a_{i,7}a_{j,7} + 16a_{i,8}a_{j,8}/3 + 16a_{i,11}a_{j,11})
\]

\[
\frac{\partial^2 N_i}{\partial y^2} \frac{\partial^2 N_j}{\partial y^2} \, dx \, dy = \frac{4h_x}{h_y^3} \int \frac{\partial^2 N_i}{\partial s^2} \frac{\partial^2 N_j}{\partial s^2} \, ds \, dr = \frac{4m^3}{n} (16a_{i,6}a_{j,6} + 16a_{i,9}a_{j,9}/3 + 48a_{i,10}a_{j,10}/10 + 16a_{i,12}a_{j,12})
\]

\[
\frac{\partial^2 N_i}{\partial x \partial y} \frac{\partial^2 N_j}{\partial x^2} \, dx \, dy = \frac{4}{h_y h_x} \int \frac{\partial^2 N_i}{\partial r \partial s} \frac{\partial^2 N_j}{\partial r^2} \, dr \, ds = 4mnR (16a_{i,4}a_{j,6} + 16a_{i,7}a_{j,9} + 16a_{i,8}a_{j,10} + 16a_{i,11}a_{j,12})
\]

\[
\frac{\partial^2 N_i}{\partial y \partial x} \frac{\partial^2 N_j}{\partial y^2} \, dx \, dy = \frac{4}{h_y h_x} \int \frac{\partial^2 N_i}{\partial s \partial r} \frac{\partial^2 N_j}{\partial s^2} \, ds \, dr = 4mnR (16a_{i,6}a_{j,4} + 16a_{i,9}a_{j,7} + 16a_{i,10}a_{j,8} + 16a_{i,12}a_{j,11})
\]

\[
\frac{\partial^2 N_i}{\partial x^2} \frac{\partial^2 N_j}{\partial x \partial y} \, dx \, dy = \frac{4h_y}{h_x^3} \int \frac{\partial^2 N_i}{\partial r \partial s} \frac{\partial^2 N_j}{\partial r \partial s} \, dr \, ds = 4mnR [4a_{i,5}a_{j,5} + 4(3a_{i,5}a_{j,11} + 4a_{i,8}a_{j,8})/3 + 4(3a_{i,5}a_{j,11} + 4a_{i,8}a_{j,8}/3 + 4(a_{i,11}a_{j,12} + a_{i,12}a_{j,11}) + 36a_{i,12}a_{j,12}/5]
\]

\[
\frac{\partial N_i}{\partial x} \frac{\partial N_j}{\partial x} \, dx \, dy = \frac{h_y}{h_x} \int \frac{\partial N_i}{\partial r} \frac{\partial N_j}{\partial r} \, dr \, ds = \frac{n}{mR} [4a_{i,2}a_{j,2} + 4(3a_{i,2}a_{j,7} + 4a_{i,4}a_{j,4} + 3a_{i,7}a_{j,7})/3 + 4(a_{i,2}a_{j,7} + a_{i,5}a_{j,5} + a_{i,8}a_{j,8})/3 + 4(3a_{i,5}a_{j,11} + 3a_{i,7}a_{j,9} + 4a_{i,8}a_{j,8} + 3a_{i,9}a_{j,7} + 3a_{i,11}a_{j,11}/9 + 4(3a_{i,5}a_{j,12} + a_{i,9}a_{j,9} + a_{i,12}a_{j,5})/5]
\]
\[+36a_{lj}a_{j/l}/5 + 12a_{l11}a_{j,11}/5 + 4(a_{l,11}a_{l,12} + a_{l,12}a_{j,11})/5 + 4a_{l,12}a_{j,12}/7\]

\[\int \frac{\partial N_i \partial N_j}{\partial y} \, dx \, dy = \frac{h_x}{h_y} \int \frac{\partial N_i \partial N_j}{\partial s} \, dr \, ds = \frac{mR}{n} \left\{ 4a_{l,3}a_{j,3} + 4(a_{l,3}a_{j,8} + a_{l,5}a_{j,5} + a_{l,8}a_{j,3})/3 \right\}
\]

\[+4(3a_{l,3}a_{j,10} + 4a_{l,6}a_{j,6} + 3a_{l,10}a_{j,3})/3 + 4(3a_{l,5}a_{j,11} + a_{l,8}a_{j,8} + a_{l,11}a_{j,5})/5
\]

\[+4(3a_{l,5}a_{j,12} + 3a_{l,8}a_{j,10} + 4a_{l,9}a_{j,9} + 3a_{l,10}a_{j,9} + 3a_{l,12}a_{j,5})/9
\]

\[+36a_{l,10}a_{j,10}/5 + 4(a_{l,11}a_{l,12} + a_{l,12}a_{j,11})/5 + 12a_{l,12}a_{j,12}/5 + 4a_{l,11}a_{j,11}/7\]

\[\int \frac{\partial N_i \partial N_j}{\partial y} \, dx \, dy = \int \frac{\partial N_i \partial N_j}{\partial r} \, dr \, ds
\]

\[= 4a_{l,2}a_{j,2} + 4(3a_{l,3}a_{j,7} + 2a_{l,5}a_{j,4} + a_{l,8}a_{j,2})/3 + 4(a_{l,3}a_{j,9} + 2a_{l,6}a_{j,5}
\]

\[+3a_{l,10}a_{j,2})/3 + 4(6a_{l,6}a_{j,11} + a_{l,8}a_{j,9} + 4a_{l,9}a_{j,7} + 9a_{l,10}a_{j,7} + 6a_{l,12}a_{j,4})/9
\]

\[+4(2a_{l,6}a_{j,12} + 3a_{l,10}a_{j,9})/5 + 4(3a_{l,8}a_{j,7} + 2a_{l,11}a_{j,4})/5
\]

\[\int \frac{\partial^2 N_i \partial^2 N_j}{\partial x^2} \, dx \, dy = \frac{4}{h_x^2} \int \frac{\partial^2 N_i \partial^2 N_j}{\partial r^2} \, dr \, ds = 4n^2\left[8a_{l,4}(a_{j,5} + a_{j,11} + a_{j,12}) + 16(a_{l,7}a_{j,8} + a_{l,8}a_{j,9}/3)\right]
\]

\[\int \frac{\partial^2 N_i \partial^2 N_j}{\partial x \partial y^2} \, dx \, dy = \frac{4}{h_x^2} \int \frac{\partial^2 N_i \partial^2 N_j}{\partial r \partial s} \, dr \, ds = 4n^2\left[8a_{l,4}(a_{l,5} + a_{l,11} + a_{l,12}) + 16a_{l,8}a_{l,7} + 16a_{l,9}a_{l,8}/3\right]
\]

\[\int \frac{\partial^2 N_i \partial^2 N_j}{\partial y^2} \, dx \, dy = \frac{4}{h_y^2} \int \frac{\partial^2 N_i \partial^2 N_j}{\partial s^2} \, dr \, ds
\]

\[= 4m^2R^2\left[8a_{l,6}(a_{j,5} + a_{j,11} + a_{j,12}) + 16a_{l,10}a_{j,9} + 16a_{l,9}a_{j,8}/3\right]
\]

\[\int \frac{\partial^2 N_i \partial^2 N_j}{\partial x \partial y^2} \, dx \, dy = \frac{4}{h_y^2} \int \frac{\partial^2 N_i \partial^2 N_j}{\partial r \partial s} \, dr \, ds
\]

\[= 4m^2R^2\left[8a_{l,6}(a_{l,5} + a_{l,11} + a_{l,12}) + 16a_{l,9}a_{l,10} + 16a_{l,8}a_{l,9}/3\right]
\]

In the above expressions \(h_x = \frac{a}{n}, \ h_y = \frac{b}{m}\) where \(a\) and \(b\) are the dimensions of the plate in the \(x\) – and \(y\) – directions respectively. \(n\) and \(m\) are the number of elements in the \(x\) – and \(y\) – directions respectively. Note that \(dx = \frac{h_x}{2} \, dr\) and \(dy = \frac{h_y}{2} \, ds\) where \(r\) and \(s\) are the normalized coordinates, and \(R = a/b\).